分析 (1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;
(2)利用(1)得出△AFE∽△BCF,则$\frac{AE}{BF}=\frac{AF}{BC}$,进而求出y与x的函数关系式.
解答 解:(1)证明:如图2,∵∠A=∠EFC,
∴∠E+∠EFA=∠EFA+∠CFB,
∴∠E=∠CFB,
∵∠A=∠B,
∴△AFE∽△BCF;
(2)解:如图3,∵AB是⊙O的直径,
∴∠ACB=90°,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=8,
∵AC=BC,
∴∠A=∠B=45°,
∴∠A=∠B=∠CFE=45°,
由(1)可得△AFE∽△BCF,
∴$\frac{AE}{BF}=\frac{AF}{BC}$,
即$\frac{y}{x}=\frac{8-x}{4\sqrt{2}}$,
∴y=-$\frac{\sqrt{2}}{8}$x2+$\sqrt{2}$x(0≤x≤8),
点评 此题是圆的综合题,主要考查了相似三角形的判定与性质以及勾股定理以及二次函数最值等知识,根据题意熟练应用相似三角形的判定与性质是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (4$\sqrt{2}$π+8π)cm | B. | B、(2$\sqrt{2}$π+4π)cm | C. | (4$\sqrt{2}$π+4π)cm | D. | (2$\sqrt{2}$π+8π)cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3b<p<3a | B. | 2a<p<2(a+b) | C. | 2a+b<p<a+2b | D. | a+2b<p<2a+b |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 30℃时两种固体物质的溶解度一样 | |
B. | 在0℃-50℃之间,甲、乙两固体物质的溶解度随温度上升而增加 | |
C. | 在0℃-40℃之间,甲、乙两固体物质溶解度相差最多是10g | |
D. | 在0℃-50℃之间,甲的溶解度比乙的溶解度高 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com