精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,点D是边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.

(1)求证:DE=DF;

(2)当A=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论.

【答案】(1)证明见解析;(2)四边形AFDE是正方形.理由见解析.

【解析】

试题

(1)由已知条件可由“HL”证Rt△DBF≌Rt△DCE,从而可得:DE=DF;

(2)由∠A=∠DFA=∠DEA=90°可证得四边形AFDE是矩形,结合DF=DE,可得四边形AFDE是正方形.

试题解析

(1)∵DBC的中点,

∴BD=CD,

∵DE⊥AC,DF⊥AB,

∴∠BFD=∠CED=90°,

Rt△BDFRt△CDE中,

∴Rt△BDF≌Rt△CDE(HL),

∴DE=DF;

(2)∠A=90°四边形AFDE是正方形.理由如下

∵DE⊥AC,DF⊥AB,

∴∠DEA=∠DFA=90°,

∵∠A=90°,

四边形AFDE是矩形,

∵DF=DE,

四边形AFDE是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.

(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是

(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

1)已知抛物线y=﹣x2+bx3经过点(﹣10),则b   ,顶点坐标   ,该抛物线关于点(01)成中心对称的抛物线的表达式是   

抽象感悟:

我们定义:对于抛物线yax2+bx+ca0),以y轴上的点M0m)为中心,作该抛物线关于点M对称的抛物线y',则我们又称抛物线y'为抛物线y的“衍生抛物线”,点M为“衍生中心”.

2)已知抛物线y=﹣x22x+5关于点(0m)的衍生抛物线为y',若这两条抛物线有交点,求m的取值范围.

问题解决:

3)已知抛物线yax2+2axba0)若抛物线y的衍生抛物线为y'bx22bx+a2b0),两抛物线有两个交点,且恰好是它们的顶点,求ab的值及衍生中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C为ABD外接圆上的一动点点C不在上,且不与点B,D重合ACB=ABD=45°

1求证:BD是该外接圆的直径;

2连结CD,求证:AC=BC+CD;

3ABC关于直线AB的对称图形为ABM,连接DM,试探究三者之间满足的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得AC之间的距离为12cm,点BD之间的距离为16m,则线段AB的长为  

A. B. 10cmC. 20cmD. 12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC3BC6,且若CD经过ABC的外心OABD,则CD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+2x﹣3x轴交于AB两点(点A在点B的左侧),将这条抛物线向右平移mm>0)个单位长度,平移后的抛物线与x轴交于CD两点(点C在点D的左侧),若BC是线段AD的三等分点,则m的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程.

1)(x+6251

2x22x2x1

3x2x2

4xx7)=87x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两块全等的三角板如图①摆放,其中∠A1CB1=ACB=90°,A1=A=30°.

(1)将图①中的A1B1C顺时针旋转45°得图②,点P1A1CAB的交点,点QA1B1BC的交点,求证:CP1=CQ;

(2)在图②中,若AP1=2,则CQ等于多少?

查看答案和解析>>

同步练习册答案