精英家教网 > 初中数学 > 题目详情
20.已知等腰△ABC,建立适当的直角坐标系后,其三个顶点的坐标分别为A(m,0).B(m+4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是(  )
A.AC=BC≠ABB.AB=AC≠BCC.AB=BC≠ACD.AB=AC=BC

分析 根据题意画出图形,由图形利用勾股定理分别计算出BC、AB、AC的长即可判断.

解答 解:如图所示,

则AD=4,BD=2,CD=3,
∴BC=5,AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∴AC=BC≠AB,
故选:A.

点评 本题主要考查坐标与图形的性质,熟练掌握坐标系中点的坐标特点和勾股定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图(1),两块三角板放置在一起,将△A′B′C绕直角顶点C顺时针旋转一个锐角α成图(2),边A′B′分别交AB,AC于点P,Q,且AQ=PQ,求旋转角α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是(  )
A.正方形B.矩形C.菱形D.直角梯形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,某超市从一楼到二楼的电梯AB的长为18米,电梯每级的水平级宽是0.3米.竖直级高是$\frac{\sqrt{3}}{10}$米.
(1)求该电梯的坡角∠BAC的度数.
(2)若电梯以每秒上升2级的速度运行,求小明跨上电梯从一楼上升到二楼需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各式中,正确的是(  )
A.m2•m3=m6B.(2a+b)(a-b)=2a2+ab-b2
C.(5a+2b)(5a-3b)=25a2-6b2D.(x-y)(x2+xy+y2)=x3-y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图甲所示,是小亮设计的一种智力拼图玩具的一部分,已知AB∥CD,∠B=30°,∠BEC=62°,求∠C的度数.
(1)填写根据:过点E作EF∥AB,如图甲所示,
∵AB∥DC,EF∥AB,
∴EF∥DC(两条直线都与第三条直线平行,那么这两条直线平行)
∴∠B=∠BEF(两直线平行,内错角相等)
∠C=∠CEF(两直线平行,内错角相等)
∴∠B+∠C=∠BEF+∠CEF
即∠B+∠C=∠BEC
∴∠C=∠BEC-∠B=62°-30°=32°
(2)方法迁移:如图乙,已知AE∥CD,若∠DCB=135°,∠ABC=72°,试求∠BAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图所示,在每个边长都为1的小正方形组成的网格中,点A、B、C均为格点.
(Ⅰ)线段AB的长度等于5;
(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在正方形ABCD中,△APBC是等边三角形,连接PD,DB,则$\frac{{S}_{△BPD}}{{S}_{正方形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,抛物线y=$\frac{1}{4}$x2+bx+c经过点A(-2,0)和原点,点B在抛物线上且tan∠BAO=$\frac{1}{2}$,抛物线的对称轴与x轴相交于点P.
(1)求抛物线的解析式,并直接写出点P的坐标;
(2)点C为抛物线上一点,若四边形AOBC为等腰梯形且AO∥BC,求点C的坐标;
(3)点D在AB上,若△ADP相似于△ABP,求点D的坐标.

查看答案和解析>>

同步练习册答案