分析 先根据SAS判定△BEM≌△CFM,从而得出∠BME=∠CMF.通过角之间的转换可得到E,M,F在一条直线上.
解答 证明:连接ME,MF.
∵AB∥CD,(已知)
∴∠B=∠C(两线平行内错角相等).
在△BEM和△CFM中,$\left\{\begin{array}{l}{EB=CF}\\{∠B=∠C}\\{MB=CM}\end{array}\right.$,
∴△BEM≌△CFM(SAS).
∴∠BME=∠CMF,
∴∠EMF=∠BME+∠BMF=∠CMF+∠BMF=∠BMC=180°,
∴E,M,F在一条直线上.
点评 此题主要考查了全等三角形的应用,关键是掌握判定两个三角形全等的判定方法,注意共线的证明方法.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com