精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为1ACBD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGHHGAB于点E,连接DEAC于点F,连接FG,则下列结论:①DE平分∠ADB;②BE=2-;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是_______.

【答案】①②③

【解析】

根据旋转的性质可知,△DGH≌△DCB,进而得知DH=DB,∠H=∠CBD=45°,∠DGH=∠DCB=90°,DG=DC=AD,之后可证△ADF≌△GDF,四边形AEGF是菱形,再根据勾股定理可知AE的长度,进而可以一一判断选出答案.

解:根据旋转的性质可知,△DGH≌△DCB,

∴DH=DB,∠H=∠CBD=45°,∠DGH=∠DCB=90°,DG=DC=AD,

在Rt△AED与Rt△GED中,AD=DG,ED=ED

∴Rt△AED≌Rt△GED(HL)

∴∠ADE=∠GDE,即DE平分∠ADB,故①正确;

在△ADF和△GDF中,AD=DG,∠ADF=∠GDF,DF=DF,

∴△ADF≌△GDF(SAS)

∴AF=GF,∠DAF=∠DGF=45°

又∵∠ABD=45°

∴FG∥AE

∵∠DAC=45°,

∴∠DAC=∠H,

∴AF∥EG

∴四边形AEGF是平行四边形,

又∵AF=GF

∴平行四边形AEGF是菱形,故③正确;

∵∠H=45°,∠HAE=90°

∴AE=AH

∵AE=AF=HD-AD=BD-AD

∵正方形ABCD的边长为1,根据勾股定理可知

即HD=

∴AE=

∴BE=,故②正确;

∵四边形AEGF是菱形

∴FG=AE=

∴BC+FG=,故④错误;

综上答案为①②③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一笔直的海岸线l上有AB两个观测站,AB的正东方向,AB2(单位:km).有一艘小船在点P处,从A测得小船在北偏西600的方向,从B测得小船在北偏东450的方向.

1)求点P到海岸线l的距离;

2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西150的方向.求点C与点B之间的距离.

(上述2小题的结果都保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x(x为正整数),每月的销量为y箱.

1)写出yx中间的函数关系式和自变量的取值范围;

2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,地物线点均不为0)的顶点为,与轴的交点为,我们称以为顶点,对称轴是轴且过点的抛物线为抛物线的衍生抛物线,直线为抛物线的衍生直线.

1)求抛物线的衍生抛物线和衍生直线的解析式;

2)若一条抛物线的衍生抛物线和衍生直线分别是,求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,用篱笆靠墙围成矩形花围ABCD,墙可利用的最大长度为15米,一面利用旧墙,其余三面用篱笆围成,篱笆总长为24米.

(1)若围成的花圃面积为402时,求BC的长;

(2)如图2若计划在花圃中间用一道隔成两个小矩形,且围成的花圃面积为502,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度hm)与它的飞行时间ts)满足二次函数关系,th的几组对应值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之间的函数关系式(不要求写t的取值范围);

(2)求小球飞行3s时的高度;

(3)问:小球的飞行高度能否达到22m?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB

1)求证:P为线段AB的中点;

2)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴相交于两点,与轴相交于点,若已知点的坐标为.

1)求抛物线的解析式;

2)在抛物线的对称轴上找一点,使的周长最小,求出点的坐标;

3)在第一象限的抛物线上是否存在点,使的面积最大?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+6经过点A(﹣20),B40),与y轴交于点C.点D是抛物线上的一个动点,点D的横坐标为m1m4),连接ACBCDBDC

1)求抛物线的解析式.

2)当△BCD的面积等于△AOC的面积的时,求m的值.

3)在抛物线的对称轴上是否存在一点Q,使得△QAC的周长最小,若存在,求出点Q的坐标.

查看答案和解析>>

同步练习册答案