精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,C、D分别为OA、OB的中点,CF⊥AB,DE⊥AB,下列结论:①CF=DE;②弧AF=弧FE=弧EB;③AE=2CF;④四边形CDEF为正方形,其中正确的是( )

A.①②③
B.①②④
C.②③④
D.①③④
【答案】分析:连接OF,OE,在直角△COF中解直角三角形,即可求得CF的长,∠COF的度数,根据正方形的判定方法,以及圆心角,弧的关系即可作出判断.
解答:解:设圆的半径长是2a.则AC=OC=OD=BD=a.
∵CF⊥AB,DE⊥AB,OC=OD
则在直角△OCF和直角△ODE中,
∴△OCF≌△ODE
∴CF=DE,故①正确;
在直角△CFO中,OF=2a,OC=a.
∴∠COF=60°
同理,∠EOD=60°
∴∠EOF=60°
∴∠COF=∠EOF=∠EOD=60°
弧AF=弧FE=弧EB,故②正确;
∠EAD=∠EOD=30°
∴AE=2ED=2CF,故③正确;
CF=a≠CD,故④错误.
则正确的是:①②③.
故选A.
点评:本题考查了圆周角定理,以及解直角三角形,正确求得∠FOA的度数是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案