【题目】如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.
(1)求项点B的坐标并求出这条抛物线的解析式;
(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;
(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.
【答案】(1)点B坐标为(1,2),y=﹣x2+x+;(2)S=﹣m2+2m+,S最大值;(3)点Q的坐标为(﹣,).
【解析】
(1)先求出抛物线的对称轴,证△ABC是等腰直角三角形,由三线合一定理及直角三角形的性质可求出BD的长,即可写出点B的坐标,由待定系数法可求出抛物线解析式;
(2)求出直线AB的解析式,点E的坐标,用含m的代数式表示出点P的坐标,如图1,连接EP,OP,CP,则由S△EPC=S△OEP+S△OCP﹣S△OCE即可求出S关于m的函数关系式,并可根据二次函数的性质写出S的最大值;
(3)先证△ODB∽△EBC,推出∠OBD=∠ECB,延长CE,交抛物线于点Q,则此时直线QC与直线BC所夹锐角等于∠OBD,求出直线CE的解析式,求出其与抛物线交点的坐标,即为点Q的坐标.
解:(1)∵A(﹣1,0)、C(3,0),
∴AC=4,抛物线对称轴为x==1,
∵BD是抛物线的对称轴,
∴D(1,0),
∵由抛物线的对称性可知BD垂直平分AC,
∴BA=BC,
又∵∠ABC=90°,
∴BD=AC=2,
∴顶点B坐标为(1,2),
设抛物线的解析式为y=a(x﹣1)2+2,
将A(﹣1,0)代入,
得0=4a+2,
解得,a=﹣,
∴抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+x+;
(2)设直线AB的解析式为y=kx+b,
将A(﹣1,0),B(1,2)代入,
得,
解得,k=1,b=1,
∴yAB=x+1,
当x=0时,y=1,
∴E(0,1),
∵点P的横坐标为m,
∴点P的纵坐标为﹣m2+m+,
如图1,连接EP,OP,CP,
则S△EPC=S△OEP+S△OCP﹣S△OCE
=×1×m+×3(﹣m2+m+)﹣×1×3
=﹣m2+2m+,
=﹣(m﹣)2+,
∵﹣<0,根据二次函数和图象及性质知,当m=时,S有最大值;
(3)由(2)知E(0,1),
又∵A(﹣1,0),
∴OA=OE=1,
∴△OAE是等腰直角三角形,
∴AE=OA=,
又∵AB=BC=AB=2,
∴BE=AB﹣AE=,
∴,
又∵,
∴,
又∵∠ODB=∠EBC=90°,
∴△ODB∽△EBC,
∴∠OBD=∠ECB,
延长CE,交抛物线于点Q,则此时直线QC与直线BC所夹锐角等于∠OBD,
设直线CE的解析式为y=mx+1,
将点C(3,0)代入,
得,3m+1=0,
∴m=﹣,
∴yCE=﹣x+1,
联立,
解得,或,
∴点Q的坐标为(﹣,).
科目:初中数学 来源: 题型:
【题目】二次函数中与的部分对应值如下表所示,则下列结论错误的是( )
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
A.B.当时,的值随值的增大而减小
C.当时,D.3是方程的一个根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明利用函数与不等式的关系,对形如 (为正整数)的不等式的解法进行了探究.
(1)下面是小明的探究过程,请补充完整:
①对于不等式,观察函数的图象可以得到如下表格:
的范围 | ||
的符号 |
由表格可知不等式的解集为.
②对于不等式,观察函数的图象可得到如下表格:
的范围 | |||
的符号 |
由表格可知不等式的解集为 .
③对于不等式,请根据已描出的点画出函数的图象;
观察函数的图象,
补全下面的表格:
的范围 | ||||
的符号 |
由表格可知不等式的解集为 .
小明将上述探究过程总结如下:对于解形如 (为正整数)的不等式,先将按从大到小的顺序排列,再划分的范围,然后通过列表格的办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.
(2)请你参考小明的方法,解决下列问题:
①不等式的解集为 .
②不等式的解集为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若点(﹣2,m),(﹣5,n)在抛物线上,则m>n
D. 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当时,求与之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为____________米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com