精英家教网 > 初中数学 > 题目详情
13.点P(m,-1)向左平移2个单位后在直线y=2x-3上,则m=3.

分析 向左平移2个单位则横坐标减去2纵坐标不变,再根据一次函数图象上点的坐标特征即可得出答案.

解答 解:点P(m,-1)向左平移2个单位后得(m-2,-1),
∵点P(m,-1)向左平移2个单位后在直线y=2x-3上,
∴-1=2(m-2)-3,
解得:m=3.
故答案为:3.

点评 本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了一次函数图象上点的坐标特征.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.一名工人一天可以加工100个A零件,或者加工150个B零件,每一个A零件和两个B零件可以组装成一套零件,某车间共有35名工人,问应如何安排这些工人,使加工出来的零件刚好可以配套.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是(  )米.
A.75•sin55°B.75•cos55°C.75•tan55°D.$\frac{75}{tan55°}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:($\sqrt{10}$×$\sqrt{15}$-$\sqrt{6}$)×$\frac{1}{{\sqrt{3}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:3x2-[7x-$\frac{1}{2}$(4x-3)-2x2],其中x=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.四边形ABCD的对角线AC,BD相交于点O,下列条件:
①AD=BC,AD∥BC;
②AD∥BC,AO=CO;
③AD∥BC,∠ADC=∠ABC;
④AB∥CD,AD=BC中
能判断四边形ABCD是平行四边形的是(  )
A.①②④B.①③④C.①②③D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知$\frac{m}{n}$=$\frac{1}{3}$,则$\frac{m}{m+n}$=$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.数学问题:
如图,在数轴上点A表示的数为-20,点B表示的数为40,动点P从点A出发以每秒5个单位长度的速度沿正方向运动,动点Q从原点出发以每秒4个单位长度的速度沿正方向运动,动点N从点B出发以每秒8个单位的速度先沿负方向运动,到达原点后立即按原速返回,三点同时出发,当点N回到点B时,三点停止运动.
(1)三个动点运动t(0<t<5)秒时,则P、Q、N三点在数轴上所表示的三个数分别为-20+5t,4t,40-8t.
(2)当QN=10个单位长度时,求此时点P在数轴上所表示的数.
(3)尝试借助上面数学问题的解题经验,建立数轴完成下面实际问题:
码头C位于A、B两码头之间,且知AC=20海里,AB=60海里,甲船从A码头顺流驶向B码头,乙船从C码头顺流驶向B码头,丙船从B码头开往C码头后立即调头返回B码头.已知甲船在静水中航速为5海里/小时,乙船在静水中航速为4海里/小时,丙船在静水中航速为8海里/小时,水流速度为2海里/小时,三船同时出发,每艘船都行驶到B码头停止.
在整个运动过程中,是否存某一时刻,这三艘船中的一艘恰好在另外两船之间,且与两船的距离相等?若存在,请求出此时甲船离B码头的距离;若不存在,请说明理由.
提示:如果你不用上面数学问题中的解题方法也能完成本题,可得满分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图所示的正方体的棱长为2,我们知道正方体的表面展开图共有11种,请你至少画出其中的3种,并求出它们的面积.

查看答案和解析>>

同步练习册答案