如图,Rt△ABC中∠C=90°,∠A=30°在AC边上取点O画圆使⊙O经过A、B两点,下列结论中:①;②;③以O为圆心,以OC为半径的圆与AB相切;④延长BC交⊙O与D,则A、B、D是⊙O的三等分点.正确的序号是 .
①③④
解析试题分析:连接OB,可得∠ABO=30°,则∠OBC=30°,根据直角三角形的性质得OC=OB=OA,再根据三角函数cos∠OBC=,则BC=OB,因为点O在∠ABC的角平分线上,所以点O到直线AB的距离等于OC的长,根据垂径定理得直线AC是弦BD的垂直平分线,则点A、B、D将⊙O的三等分.
连接OB
∴OA=OB,
∴∠A=∠ABO,
∵∠C=90°,∠A=30°,
∴∠ABC=60°,
∴∠OBC=30°,
∴OC=OB=OA,
即OA=2OC,
故①正确;
∵cos∠OBC=,
∴BC=OB,即BC=OA
故②错误;
∵∠ABO=∠OBC=30°,
∴点O在∠ABC的角平分线上,
∴点O到直线AB的距离等于OC的长,
即以O为圆心,以OC为半径的圆与AB相切;
故③正确;
延长BC交⊙O于D,
∵AC⊥BD,
∴AD=AB,
∴△ABD为等边三角形,
∴点A、B、D将⊙O的三等分.
故④正确.
故答案为①③④.
考点:直角三角形的性质,勾股定理,垂径定理,角平分线的判定和性质,等边三角形的判定和性质
点评:本题知识点多,综合性强,是中考常见题,需要学生熟练掌握平面图形的基本概念,难度较大.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com