【题目】如图,平面直角坐标系中,直线y=与x轴交于点A,与双曲线在第一象限内交于点B,BC⊥x轴于点C,OC=3AO.
(1)求双曲线的解析式;
(2)直接写出不等式的解集.
【答案】(1) y=;(2) 0<x<3时或x<﹣4.
【解析】
(1)根据已知求得B点的横坐标,将横坐标代入直线解析式中求出B点的坐标,把B点坐标代入双曲线y=即可求得k的值,从而确定出反比例解析式;
(2)根据一次函数与反比例函数的两交点的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.
(1)∵直线y=与x轴交于点A
∴A(﹣1,0),OA=1;
∵OC=3AO;
∴OC=3,B点的横坐标为3;
把B点的横坐标为3代入直线y=中,
解得y=,
∴B(3,),
点B在双曲线上,
∴,
解得k=4,
∴双曲线的解析式为:y=.
(2)解得x=3或﹣4;
由图象可知:当0<x<3或x<﹣4时,满足不等式> ,
∴不等式> 的解集为:0<x<3时或x<﹣4.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线长为.点E、F分别在正方形ABCD的边AB、CD上,四边形EFMG的边MG分别与正方形ABCD的边AB、BC交于点H、K,边MF与正方形ABCD的边BC交于点N.若四边形EFDA沿直线EF折叠后能与四边形EFMG重合,则图中四个三角形△EGH、△HBK、△KMN、△NCF的周长的和为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束. 在整个运动过程中,点C运动的路程是( )
A. 4 B. 6 C. 4﹣2 D. 10﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.
(1)求直径AB的长.
(2)求阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线C:y=x2+3x-10平移到C′.若两条抛物线C,C′关于直线x=1对称,则下列平移方法中正确的是( )
A. 将抛物线C向右平移个单位 B. 将抛物线C向右平移3个单位
C. 将抛物线C向右平移5个单位 D. 将抛物线C向右平移6个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点D,抛物线y=ax2+bx+c(a≠0)的顶点为C,其图象过A、D两点,并与x轴交于另一个点B(B点在A点左侧),若;
(1)求此抛物线的解析式;
(2)连结AC、BD,问在x轴上是否存在一个动点Q,使A、C、Q三点构成的三角形与△ABD相似.如果存在,求出Q点坐标;如果不存在,请说明理由.
(3)如图2,若点P是抛物线上一动点,且在直线AD下方,(点P不与点A、点D重合),过点P作y轴的平行线l与直线AD交于点M,点N在直线AD上,且满足△MPN∽△ABD,求△MPN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.
(1)求证:AE平分∠BAC;
(2)若AD=2,EC= ,∠BAC=60°,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com