精英家教网 > 初中数学 > 题目详情
已知,如图,AB为⊙O的直径,AC与⊙O相切于点A,CEAB交⊙O于D、E.求证:EB2=CD•AB.
证明:连接AD、DB,
∵AB是圆O的直径,AC切圆O于点A,
∴∠CAB=90°,∠ADB=90°,
∵CEAB,
∴∠C+∠CAB=180°,
∴∠C=90°,∠C=∠ADB,
∵∠CAD=∠DBA,
∴△ACD△BDA,
CD
AD
=
AD
AB

∴AD2=CD•AB,
∵CEAB,
AD
=
EB

∴AD=EB
∴EB2=CD•AB.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,点P是⊙O外一点,PA切⊙O于点A,∠O=60°,则∠P度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的半径为3cm,圆心O到直线l的距离是2m,则直线l与⊙O的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,割线PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求证:PA是⊙O的切线;
(2)若PA=6,CD=3PC,求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

点O到直线l的距离为5,如果以点O为圆心的圆上只有两点到直线l的距离为2,则该圆的半径r的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O的直径;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCD的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B、C三点在⊙O上,
AB
=
BC
,∠1=∠2.
(1)判断OA与BC的位置关系,并说明理由;
(2)求证:四边形OABC是菱形;
(3)过A作⊙O的切线交CB的延长线于P,且OA=4,求△APB的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,已知AB=8,大圆半径为5,则小圆半径为______.

查看答案和解析>>

同步练习册答案