精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠C=90°,以BC为直径的⊙OAB于点D,⊙O的切线DEAC于点E

1)求证:EAC中点;

2)若AB=10BC=6,连接CDOE,交点为F,求OF的长.

【答案】1)证明见解析;(2OF=1.8

【解析】

1)连接CD,根据切线的性质,就可以证出∠A=ADE,从而证明AE=CE

2)求出OD,根据直角三角形斜边上中线性质求出DE,根据勾股定理求出OE,根据三角形面积公式求DF,根据勾股定理求出OF即可.

1)连接CD

∵∠ACB=90°BC为⊙O直径,

ED为⊙O切线,且∠ADC=90°

ED切⊙O于点D

EC=ED

∴∠ECD=EDC

∵∠A+ECD=ADE+EDC=90°

∴∠A=ADE

AE=ED

AE=CE

EAC的中点;

BE=CE

2)连接OD

∵∠ACB=90°

AC为⊙O的切线,

DE是⊙O的切线,

EO平分∠CED

OECDFCD的中点,

∵点EO分别为ACBC的中点,

OE=AB==5

RtACB中,∠ACB=90°AB=10BC=6,由勾股定理得:AC=8

∵在RtADC中,EAC的中点,

DE=AC==4

RtEDO中,OD=BC==3DE=4,由勾股定理得:OE=5

由三角形的面积公式得:SEDO=

4×3=5×DF

解得:DF=2.4

RtDFO中,由勾股定理得:OF===1.8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小玲家在某24层楼的顶楼,对面新造了一幢28米高的图书馆,小玲在楼顶A处看图书馆楼顶B处和楼底C处的俯角分别是45°60°.请问:

1)两楼的间距是多少米?(精确到1m

2)小玲家的这幢住宅楼的平均层高是多少米?(精确到0.1m

(参考了数据: ≈1.73≈1.41

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣+mx+4m的图象与x轴交于AB两点(AB的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2D是抛物线的顶点.

1)求二次函数的表达式;

2)当﹣x1时,请求出y的取值范围;

3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),

B(3,2)

(1)求m的值和抛物线的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读题例,解答下题:

例解方程

解:

,即

,即

解得:不合题设,舍去

解得不合题设,舍去

综上所述,原方程的解是

依照上例解法,解方程

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为保证车辆行驶安全,现在公路旁设立一检测点A观测行驶的汽车是否超速.如图,检测点A到公路的距离是24米,在公路上取两点BC,使得∠ACB=30°,∠ABC=120°

(1)BC的长(结果保留根号);

(2)已知该路段限速为45千米/小时,若测得某汽车从BC用时2秒,这辆汽车是否超速?说明理由.(参考数据:1.71.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.

其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把(sinα)2记作sin2α,根据图1和图2完成下列各题.

1sin2A1+cos2A1= sin2A2+cos2A2= sin2A3+cos2A3=

2)观察上述等式猜想:在RtABC中,∠C=90°,总有sin2A+cos2A=

3)如图2,在RtABC中证明(2)题中的猜想:

4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA

查看答案和解析>>

同步练习册答案