【题目】如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.
(1)求证:E是AC中点;
(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.
【答案】(1)证明见解析;(2)OF=1.8.
【解析】
(1)连接CD,根据切线的性质,就可以证出∠A=∠ADE,从而证明AE=CE;
(2)求出OD,根据直角三角形斜边上中线性质求出DE,根据勾股定理求出OE,根据三角形面积公式求DF,根据勾股定理求出OF即可.
(1)连接CD,
∵∠ACB=90°,BC为⊙O直径,
∴ED为⊙O切线,且∠ADC=90°;
∵ED切⊙O于点D,
∴EC=ED,
∴∠ECD=∠EDC;
∵∠A+∠ECD=∠ADE+∠EDC=90°,
∴∠A=∠ADE,
∴AE=ED,
∴AE=CE,
即E为AC的中点;
∴BE=CE;
(2)连接OD,
∵∠ACB=90°,
∴AC为⊙O的切线,
∵DE是⊙O的切线,
∴EO平分∠CED,
∴OE⊥CD,F为CD的中点,
∵点E、O分别为AC、BC的中点,
∴OE=AB==5,
在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=8,
∵在Rt△ADC中,E为AC的中点,
∴DE=AC==4,
在Rt△EDO中,OD=BC==3,DE=4,由勾股定理得:OE=5,
由三角形的面积公式得:S△EDO=,
即4×3=5×DF,
解得:DF=2.4,
在Rt△DFO中,由勾股定理得:OF===1.8.
科目:初中数学 来源: 题型:
【题目】小玲家在某24层楼的顶楼,对面新造了一幢28米高的图书馆,小玲在楼顶A处看图书馆楼顶B处和楼底C处的俯角分别是45°,60°.请问:
(1)两楼的间距是多少米?(精确到1m)
(2)小玲家的这幢住宅楼的平均层高是多少米?(精确到0.1m)
(参考了数据: ≈1.73,≈1.41)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
(1)求二次函数的表达式;
(2)当﹣<x<1时,请求出y的取值范围;
(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),
B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为保证车辆行驶安全,现在公路旁设立一检测点A观测行驶的汽车是否超速.如图,检测点A到公路的距离是24米,在公路上取两点B、C,使得∠ACB=30°,∠ABC=120°.
(1)求BC的长(结果保留根号);
(2)已知该路段限速为45千米/小时,若测得某汽车从B到C用时2秒,这辆汽车是否超速?说明理由.(参考数据:≈1.7,≈1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把(sinα)2记作sin2α,根据图1和图2完成下列各题.
(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;
(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A= ;
(3)如图2,在Rt△ABC中证明(2)题中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com