精英家教网 > 初中数学 > 题目详情

若点(a,-3)与点(2,b)关于x轴对称,则a、b分别为


  1. A.
    (-2,-3)
  2. B.
    (2,-3)
  3. C.
    (3,-2)
  4. D.
    (2,3)
D
分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.
解答:∵点(a,-3)与点(2,b)关于x轴对称,
∴a=2,b=3.
故选D.
点评:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

作一个图形关于一条直线的轴对称图形,再将这个轴对称图形沿着与这条直线平行的方向平移,我们把这样的图形变换叫做关于这条直线的滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1),结合轴对称和平移的有关性质,解答以下问题:精英家教网
(1)如图2,在关于直线l的滑动对称变换中,试证明:两个对应点A,A′的连线被直线l平分;
(2)若点P是正方形ABCD的边AD上的一点,点P关于对角线AC滑动对称变换的对应点P′也在正方形ABCD的边上,请仅用无刻度的直尺在图3中画出P′;
(3)定义:若点M到某条直线的距离为d,将这个点关于这条直线的对称点N沿着与这条直线平行的方向平移到点M′的距离为s,称[d,s]为点M与M′关于这条直线滑动对称变换的特征量.如图4,在平面直角坐标系xOy中,点B是反比例函数y=
3x
的图象在第一象限内的一个动点,点B关于y轴的对称点为C,将点C沿平行于y轴的方向向下平移到点B′.
①若点B(1,3)与B′关于y轴的滑动对称变换的特征量为[m,m+4],判断点B′是否在此函数的图象上,为什么?
②已知点B与B′关于y轴的滑动对称变换的特征量为[d,s],且不论点B如何运动,点B′也都在此函数的图象上,判断s与d是否存在函数关系?如果是,请写出s关于d的函数关系式.

查看答案和解析>>

科目:初中数学 来源:中考真题 题型:解答题

如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点。
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)。

查看答案和解析>>

科目:初中数学 来源: 题型:

观察发现

    如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

    做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

  点就是所求的点P,故BP+PE的最小值为        .  

         

题26(a)图                    题26(b)图               

(2)实践运用

    如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

      

题26(c)图                       题26(d)图

 (3)拓展延伸

    如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察发现
如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这
点就是所求的点P,故BP+PE的最小值为       .  
         
题26(a)图                    题26(b)图               
(2)实践运用
如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
      
题26(c)图                       题26(d)图
(3)拓展延伸
如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生考试数学卷(江苏苏州) 题型:解答题

观察发现

    如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

    做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

  点就是所求的点P,故BP+PE的最小值为        .  

         

题26(a)图                     题26(b)图               

(2)实践运用

    如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

      

题26(c)图                        题26(d)图

 (3)拓展延伸

    如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

同步练习册答案