【题目】如图,在锐角△ABC中,小明进行了如下的尺规作图:
①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
②作直线PQ分别交边AB、BC于点E、D.
(1)小明所求作的直线DE是线段AB的 ;
(2)联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.
【答案】(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
【解析】
(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
故答案为线段AB的垂直平分线(或中垂线);
(2)过点D作DF⊥AC,垂足为点F,如图,
∵DE是线段AB的垂直平分线,
∴AD=BD=7
∴CD=BC﹣BD=2,
在Rt△ADF中,∵sin∠DAC=,
∴DF=1,
在Rt△ADF中,AF=,
在Rt△CDF中,CF=,
∴AC=AF+CF=.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q.
(1)若BP=,求∠BAP的度数;
(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;
(3)以PQ为直径作⊙M.
①判断FC和⊙M的位置关系,并说明理由;
②当直线BD与⊙M相切时,直接写出PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三个点都在反比例函数的图象上,比较y1,y2,y3的大小,则下列各式正确的是( )
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.
(1)求证:∠E=∠C;
(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图是等宽的勒洛三角形和圆形滚木的截面图.
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图中,点到上任意一点的距离都相等
③图中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等
C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.
(1)孔明同学调查的这组学生共有_______人;
(2)这组数据的众数是_____元,中位数是_____元;
(3)若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)的顶点M(1,﹣4a),且过点A(4,t),与x轴交于B、C两点(点B在点C的左侧),直线l经过点A,B,交y轴交于点D.
(1)若a=﹣1,当2≤x<4时,求y的范围;
(2)若△MBC是等腰直角三角形,求△ABM的面积;
(3)点E是直线l上方的抛物线上的动点,△BDE的面积的最大值为;设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、B、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com