科目:初中数学 来源: 题型:
已知∠ACD=90°,MN是过点A的直线,AC=DC,且DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:
解:过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,
∴∠BCD=∠ACE.
∵DB⊥MN ∴∠ABC+∠CBD=90°,
∵CE⊥CB ∴∠ABC+∠CEA=90°,
∴∠CBD=∠CEA.
又∵AC=DC,
∴△ACE≌△DCB(AAS),
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE=CB.
又∵BE=AE+AB,
∴BE=BD+AB,
∴BD+AB=CB.
(1)当MN绕A旋转到如图(2)位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并给予证明.
(2)当MN绕A旋转到如图(3)位置时,BD、AB、CB满足什么样关系式,请直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
下列解方程过程中,变形正确的是( )。
(A)由2x-1=3,得2x=3-1 (B)由2x-3(x+4) =5, 得2x-3x-4=5
(C)由-75x=76,得x=- (D)由2x-(x-1)=1,得2x-x=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com