精英家教网 > 初中数学 > 题目详情
选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
题甲:已知关于x的方程x2+2(a-1)x+a2-7a-4=0的两根为x1、x2,且满足x1x2-3x1-3x2-2=0.求(1+
4
a2-4
)•
a+2
a
的值.
题乙:如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC精英家教网=4.
(1)求证:AC⊥BD;
(2)求△AOB的面积.
我选做的是
 
题.
分析:甲:首先利用根与系数的关系求得x1+x2,x1x2的值,然后代入x1x2-3x1-3x2-2=0,即可求得a的值,然后化简(1+
4
a2-4
)•
a+2
a
,代入a的值即可求得答案;
乙:(1)过点D作DE∥AC,交BC的延长线于E,即可证得四边形ACED是平行四边形,则可求得BD,BE,DE的长,由勾股定理的逆定理即可证得BD⊥DE,则可证得BD⊥AC;
(2)首先作DF⊥BC,由S△DBC=
1
2
BE•DF=
1
2
BD•DE,即可求得DF的值,求得△ABC的面积,又由△AOD∽△COB,求得OA与OC的比值,根据同高的三角形的面积比等于对应底的比即可求得答案.
解答:解:题甲:关于x的方程x2+2(a-1)x+a2-7a-4=0的两根为x1、x2
∴x1+x2=-2(a-1)=2-2a,x1x2=a2-7a-4,
∴x1x2-3x1-3x2-2=x1x2-3(x1+x2)-2=a2-7a-4-3(2-2a)-2=a2-a-12=0,
解得:a=-3或a=4,
当a=-3时,原方程化为x2-8x+26=0,
∵△=-40<0,此时原方程无解,
∴a=-3不合题意,应舍去.
当a=4时,原方程化为x2+6x-16=0,
∵△=100>0,此时原方程有两个实数根,
∴a=4符合题意
又∵(1+
4
a2-4
)•
a+2
a
=
a2
(a+2)(a-2)
a+2
a
=
a
a-2

当a=4时,原式=
4
4-2
=2.
(1+
4
a2-4
)•
a+2
a
的值为2.

题乙:(1)过点D作DE∥AC,交BC的延长线于E,
∵AD∥BC,
∴四边形ACED是平行四边形,
∴DE=AC,DE⊥BD,CE=AD,
∵AD=2,BC=BD=3,AC=4,
∴BE=BC+CE=5,DE=AC=4,BD=3,精英家教网
∴BD2+DE2=BE2
∴∠BDE=90°,
∴BD⊥DE,
∴BD⊥AC;

(2)过点D作DF⊥BC于F,
∵S△DBE=
1
2
BE•DF=
1
2
BD•DE,
∴DF=
BD•DE
BE
=
3×4
5
=
12
5

∴S△ABC=
1
2
BC•DF=
1
2
×3×
12
5
=
18
5

∵AD∥BC,
∴△AOD∽△COB,
OA
OC
=
AD
BC
=
2
3

∴OA:AC=2:5,
∴S△AOB:S△ABC=2:5,
∴S△AOB=
2
5
S△ABC=
2
5
×
18
5
=
36
25
点评:此题考查了根与系数的关系,分式的化简以及梯形的性质,平行四边形的性质与相似三角形的判定与性质等知识.此题综合性很强,解题时要注意仔细分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:关于x的一元二次方程x2+(2k-3)x+k2=0有两个不相等的实数根α、β.
(1)求k的取值范围;
(2)若α+β+αβ=6,求(α-β)2+3αβ-5的值.
乙题:如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=
14
DC,连接EF并延长交BC的延长线于点G
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
选做题:甲:已知关于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求证:不论m取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1、x2满足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=
2
3
,求△ACF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
题甲:如图1,正比例函数y=-
1
2
x
的图象与反比例函数y=
k
x
(k≠0)
在第二象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数图象上的点,且B点的横坐标为-1,在x轴上一点P,使PA+PB最小,求P点的坐标.
题乙:如图2,已知AB、AC分别为⊙O的直径和弦,D为BC的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE与⊙O相切;
(2)求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲:如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
证明:(1)BD=DC;(2)DE是⊙O的切线.

乙:已知关于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)证明:这个方程有两个不相等的实根
(2)如果这个方程的两根分别为x1,x2,且(x1-5)(x2-5)=5m,求m的值.

查看答案和解析>>

同步练习册答案