分析 由方程mx2-2(m+2)x+m+5=0没有实数根,得△1=4(m+2)2-4m(m+5)<0,解得m>4.关于x的方程(m-5)x2-2(m+2)x+m=0,当m-5=0,为一元一次方程,有一个根;当m-5≠0时,△2=4(m+2)2-4m(m-5)=4(9m+4)>0,有两个不相等的实数根.
解答 解:由方程mx2-2(m+2)x+m+5=0没有实数根,得△1=4(m+2)2-4m(m+5)<0,解得m>4;
关于x的方程(m-5)x2-2(m+2)x+m=0,当m-5=0,为一元一次方程,有一个根;
当m-5≠0时,△2=4(m+2)2-4m(m-5)=4(9m+4),
∵m>4,
∴△2>0,所以方程有两个不相等的实数根.即关于x的方程(m-5)x2-2(m+2)x+m=0的实根的个数为1个或两个.
故答案为:1或2.
点评 本题考查了一元二次方程根的判别式.当△>0,一元二次方程有两个不相等的实根;当△=0,一元二次方程有两个相等的实根;当△<0,一元二次方程没有实根.注意讨论二次项系数,当它不为0,为一元二方程,当它等于0,再看是否为一元一次方程.
科目:初中数学 来源: 题型:选择题
A. | c | B. | $\frac{1}{c}$ | C. | $\frac{a-b}{a+b}$ | D. | $\frac{a+b}{a-b}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | r=3 | B. | 1<r<3 | C. | 1<r<5 | D. | 1≤r≤5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com