A. | 28 | B. | 33 | C. | 45 | D. | 57 |
分析 此题主要是要联系实际:日历.从实际生活中知道,日历都是按星期排列的.即纵列上,上下两行都是相差7天.
因此可设纵列中第一个数为x,则第二个=x+7第三个=x+14可得三个数的和=x+(x+7)+(x+14)=3x+21,由此式可知三数的和最少为24.
然后用排除法,再把28,33,45,57代入式子不能得整数排除.
解答 解:设第一个数为x,则第二个=x+7,第三个=x+14,可得三个数的和=x+(x+7)+(x+14)=3x+21,
A、3x+21=28,解得x不是整数,故它们的和一定不是28;
B、3x+21=33,解得:x=4,故它们的和可能是33;
C、3x+21=45,解得:x=8,故它们的和可能是45;
D、3x+21=57,解得:x=12,故它们的和可能是57.
故选A.
点评 此题主要考查了一元一次方程的应用,关键是知道日历上相邻的三个数的特点,题目难度不大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com