精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,AC=3,BC=4,CP、CM分别是AB上的高和中线,如果圆A是以点A为圆心,半径长为2的圆,那么下列判断正确的是


  1. A.
    点P,M均在圆A内
  2. B.
    点P、M均在圆A外
  3. C.
    点P在圆A内,点M在圆A外
  4. D.
    点P在圆A外,点M在圆A内
C
分析:先利用勾股定理求得AB的长,再根据面积公式求出CP的长,根据勾股定理求出AP的长,根据中线的定义求出AM的长,然后由点P、M到A点的距离判断点P、M与圆A的位置关系即可.
解答:解:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB==5,
∵CP、CM分别是AB上的高和中线,
AB•CP=AC•BC,AM=AB=2.5,
∴CP=
∴AP==1.8,
∵AP=1.8<2,AM=2.5>2,
∴点P在圆A内、点M在圆A外
故选C.
点评:本题考查了点与圆的位置关系的判定,根据点与圆心之间的距离和圆的半径的大小关系作出判断即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案