精英家教网 > 初中数学 > 题目详情
12.如图,点A(2,2)在双曲线y1=$\frac{k}{x}$(x>0)上,点C在双曲线y2=-$\frac{9}{x}$(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.
(1)求k的值;
(2)求证:△BCE≌△ABF;
(3)求直线BD的解析式.

分析 (1)把A点坐标代入y1=$\frac{k}{x}$可求得k的值;
(2)由正方形的性质得出BC=AB,∠ABC=90°,再由角的互余关系证出∠BCE=∠ABF,由AAS即可证明△BCE≌△ABF;
(3)由△BCE≌△ABF得出BE=AF=2,CE=BF,设OB=x,则OE=x+2,CE=BF=x+2,点C的坐标为:(-x-2,x+2),代入双曲线y2=-$\frac{9}{x}$(x<0)得出方程:-(x+2)2=-9,得出x=1,OB=1,B(-1,0),AG=5,再由HL证明Rt△BOD≌Rt△CGA,得出OD=AG=5,得出D(0,5),设直线BD的解析式为:y=kx+b,把B、D坐标代入得出方程组,解方程组求出k、b,即可得出直线BD的解析式.

解答 (1)解:把点A(2,2)代入y1=$\frac{k}{x}$,
得:2=$\frac{k}{2}$,
∴k=4;
(2)证明:∵四边形ABCD是正方形,
∴BC=AB,∠ABC=90°,BD=AC,
∴∠EBC+∠ABF=90°,
∵CE⊥x轴,AF⊥x轴,
∴∠CEB=∠BFA=90°,
∴∠BCE+∠EBC=90°,
∴∠BCE=∠ABF,
在△BCE和△ABF中,
$\left\{\begin{array}{l}{∠BCE=∠ABF}&{\;}\\{∠CEB=∠BFA}&{\;}\\{BC=AB}&{\;}\end{array}\right.$,
∴△BCE≌△ABF(AAS);
(3)解:连接AC,作AG⊥CE于G,如图所示:
则∠AGC=90°,AG=EF,GE=AF=2,
由(2)得:△BCE≌△ABF,
∴BE=AF=2,CE=BF,
设OB=x,则OE=x+2,CE=BF=x+2,
∴OE=CE,
∴点C的坐标为:(-x-2,x+2),
代入双曲线y2=-$\frac{9}{x}$(x<0)得:-(x+2)2=-9,
解得:x=1,或x=-5(不合题意,舍去),
∴OB=1,BF=3,CE=OE=3,
∴EF=2+3=5,CG=1=OB,B(-1,0),AG=5,
在Rt△BOD和Rt△CGA中,
$\left\{\begin{array}{l}{BD=AC}\\{OB=CG}\end{array}\right.$,
∴Rt△BOD≌Rt△CGA(HL),
∴OD=AG=5,
∴D(0,5),
设直线BD的解析式为:y=kx+b,
把B(-1,0),D(0,5)代入得:$\left\{\begin{array}{l}{-k+b=0}\\{b=5}\end{array}\right.$,
解得:k=5,b=5.
∴直线BD的解析式为:y=5x+5.

点评 本题是反比例函数综合题目,考查了反比例函数解析式的求法、正方形的性质、全等三角形的判定与性质、坐标与图形特征等知识,本题难度较大,综合性强,特别是(3)中,需要通过求反比例函数解析式和作辅助线证明三角形全等得出相关点的坐标,才能求出直线的解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)$\frac{1}{x+2}$+$\frac{1}{x}$=$\frac{32}{{x}^{2}+2x}$                       
(2)$\frac{3}{x-2}$+$\frac{x}{2-x}$=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列二次根式中是最简二次根式的是(  )
A.$\sqrt{4x}$B.$\sqrt{\frac{1}{x}}$C.$\sqrt{{x}^{2}+{y}^{2}-2xy}$D.$\sqrt{{x}^{2}-{y}^{2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,一次函数y=-$\frac{3}{4}$x+6的图象与x轴交于A,与y轴交于C,以O,A,C为顶点在第一象限作矩形OABC.
(1)求点B的坐标,并在坐标系中画出函数y=-$\frac{3}{4}$x+6的图象和矩形OABC.
(2)若反比例函数y=$\frac{k}{x}$(x>0)的图象与△OAC有公共点,求k的取值范围.
(3)在线段AC上存在点P,以点P,B,C三点为顶点的三角形是等腰三角形,直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.将连续正整数按图示的规律排列,观察图表并回答下列问题:
(1)在第1列第2013行的数是2025079;
(2)在第1行第n列的数是$\frac{n(n+1)}{2}$;
(3)位于第7行第7列的数是多少?为什么?
[参考公式:1+2+3+…+n=$\frac{n(n+1)}{2}$].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在△ABC中,AB=AC,O是BC中点,BC=12$\sqrt{3}$cm,AB与⊙O相切于点D,AD:DB=1:3
(1)求证:AC是⊙O的切线;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图①,在梯形ABCD中,AB∥CD,∠B=90°,AB=6,CD=3,BC=$\sqrt{3}$.△EFG是边长为3的等边三角形,且与梯形ABCD位于直线AB同侧,点E与点A重合,EF与AB在同一直线上.△EFG以每秒1个单位的速度沿直线AB向右平移,当点E与点B重合时运动停止.设△EFG的运动时间为t(秒).
(1)当△EFG的边EG经过点D时,求t的值;
(2)在平移过程中,设△EFG与梯形ABCD重叠部分的面积为S,请直接写出S与t的函数关系式及其对应的自变量t的取值范围;
(3)如图②,当△EFG的平移运动停止后(此时点B与点E重合),将△EFG绕点F进行旋转,在旋转过程中,设EG所在直线与射线AD相交于点M,与射线FB相交于点N,当△AMN为等腰三角形时,求AN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连PC交⊙O于点D,若BD∥AC,则tan∠ACP的值是(  )
A.$\frac{3}{\sqrt{3}}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{3}}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=4.

查看答案和解析>>

同步练习册答案