精英家教网 > 初中数学 > 题目详情

【题目】已知双曲线与直线交于A、B两点,A的坐标为(3,2).

(1)由题意可得的值为______,的值为________,点B的坐标为_________;

(2)直接写出当,的取值范围;

(3)若点P在第一象限的双曲线上,试求出的值及点P的坐标。

【答案】1m=6B(-3,-2);(2)-3x0x3;(3n=3,P16).

【解析】

(1)把A坐标代入反比例解析式求出m的值确定出反比例解析式A坐标代入直线解析式求出k的值利用对称性求出B坐标即可

(2)画出图象观察图象即可得出结论

(3)P坐标代入反比例解析式求出n的值确定出P坐标即可

1)把A(3,2)代入反比例解析式得m=6;

A(3,2)代入直线解析式得k由对称性得B(﹣3,﹣2).

故答案为:6;;(﹣3,﹣2);

(2)画出函数图象观察可知时,x的取值范围是-3x0x3

(3)Pn﹣2,n+3)代入y中得:(n﹣2)(n+3)=6,整理得n2+n﹣12=0,即(n﹣3)(n+4)=0,解得n=3n=﹣4(舍去),∴n=3,P(1,6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某专卖店经市场调查得知,一种商品的月销售量 Q(单位:吨)与销售价格 x(单位:万元/)的关系可用下图中的折线表示.

(1)写出月销售量 Q 关于销售价格 x 的关系;

(2)如果该商品的进价为 5 万元/吨,除去进货成本外,专卖店销售该商品每月的固定成本为 10 万元,问该商品 每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.

(1)如图1,当点P与点O重合时,写出OE与OF的数量关系;

(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;

(3)如图3,当点P在AC的延长线上时,写出OE与OF的数量关系;位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD.

(1)求证:四边形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.

(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;

(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. 当AB=BC时,平行四边形ABCD是菱形

B. 当AC⊥BD时,平行四边形ABCD是菱形

C. 当AC=BD时,平行四边形ABCD是正方形

D. 当∠ABC=90°时,平行四边形ABCD是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,O是对角线AC的中点,延长AB到G,使BG=AB,连接GO并延长,交BC于E,交AD于F,且AC=2AB,连接AE、CF.求证:四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F是菱形ABCD对角线上的两点,且AE=CF.

(1)求证:四边形BEDF是菱形;

(2)若AD=6,AE=DE,求菱形BEDF的周长

查看答案和解析>>

同步练习册答案