9£®ÏÂÁÐÊÇÍõÃ÷ͬѧ½â²»µÈʽ£¨2x-1£©£¨x+3£©£¼0µÄ˼·£¬°´ÒªÇóÍê³ÉÏÂÁи÷СÌ⣮
˼··ÖÎö£ºÈôÁ½ÒòʽһÕýÒ»¸º£¬ÔòÕâ¸öÒòʽµÄ³Ë»ýÒ»¶¨ÊǸºµÄ£¬ËùÒÔÒª½â²»µÈʽ£¨2x-1£©£¨x+3£©£¼0£¬¿Éת»¯Îª½â²»µÈʽ×é$\left\{\begin{array}{l}{2x-1£¾0}\\{x+3£¼0}\end{array}\right.$£¬Õâ¸ö²»µÈʽ×éµÄ½â£¬¾ÍÊÇÔ­²»µÈʽµÄ½â£®
£¨1£©ÍõÃ÷ͬѧµÄ˼·ÊÇ·ñÕýÈ·£»Èç¹û²»ÕýÈ·£¬ÇëÄã°ïËû¸ÄÕý£¬²¢Çó³öÔ­²»µÈʽµÄ½â£»
£¨2£©Çëд³öÈç¹ûÓÃÍõÃ÷ͬѧµÄ˼·Çó²»µÈʽ$\frac{5x-3}{3x+6}$¡Ü0µÄ½âʱ£¬¿ÉÒÔת»¯³ÉµÄ²»µÈʽ×飮

·ÖÎö £¨1£©ÓɽⲻµÈʽ£¨2x-1£©£¨x+3£©£¼0ת»¯Îª½â²»µÈʽ×é$\left\{\begin{array}{l}{2x-1£¾0}\\{x+3£¼0}\end{array}\right.$ »ò$\left\{\begin{array}{l}{2x-1£¼0}\\{x+3£¾0}\end{array}\right.$£¬·Ö±ð½âÕâÁ½¸ö²»µÈʽ×é¿ÉµÃ£»
£¨2£©¸ù¾ÝÁ½Ê½µÄÉÌΪ¸º£¬Ôò±»³ýʽºÍ³ýʽÒìºÅÇÒ³ýʽ²»µÈÓÚ0¿Éת»¯ÎªÁ½¸ö²»µÈʽ×飮

½â´ð ½â£º£¨1£©ÍõÃ÷ͬѧµÄ˼·²»ÕýÈ·£¬
½â²»µÈʽ£¨2x-1£©£¨x+3£©£¼0£¬¿Éת»¯Îª½â²»µÈʽ×飺
$\left\{\begin{array}{l}{2x-1£¾0}\\{x+3£¼0}\end{array}\right.$ £¨1£©
»ò$\left\{\begin{array}{l}{2x-1£¼0}\\{x+3£¾0}\end{array}\right.$ £¨2£©£¬
½â²»µÈʽ£¨1£©µÃ£º²»µÈʽ×éÎ޽⣻
½â²»µÈʽ£¨2£©µÃ£º-3£¼x£¼$\frac{1}{2}$£»
¹ÊÔ­²»µÈʽµÄ½â¼¯Îª£º-3£¼x£¼$\frac{1}{2}$£»

£¨2£©¡ß$\frac{5x-3}{3x+6}$¡Ü0£¬
¡à$\left\{\begin{array}{l}{5x-3¡Ü0}\\{3x+6£¾0}\end{array}\right.$»ò$\left\{\begin{array}{l}{5x-3¡Ý0}\\{3x+6£¼0}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²é½â²»µÈʽºÍ²»µÈʽ×éµÄÄÜÁ¦£¬¿¼²éÁËͬѧÃǵÄÔĶÁÀí½âÄÜÁ¦£¬¶ÔÓÚ·Öʽ²»µÈʽ£¬Ó¦µ±¸ù¾Ý¡°Á½ÊýÏà³ý£¬ÒìºÅµÃ¸º¡±½øÐзÖÎö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÀûÓú¯ÊýµÄ֪ʶ½â²»µÈʽ2x+4£¾6£¬¿ÉÒÔÑ¡ÔñÄÄЩº¯ÊýµÄͼÏó£¿ÀûÓÃÄÄÖÖº¯ÊýµÄͼÏóÇó½â»á¸ü¼ò±ã£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®»¯¼ò£º$\sqrt{12}$-£¨$\frac{1}{2}$£©-1-|1-$\sqrt{3}$|+2sin30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½â·½³Ì£º$\frac{2x}{x-1}$-2=$\frac{1}{1-{x}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ1£¬4£¬-2£¬7£¬$\frac{3}{2}$£¬¦Ð-1ÕâЩÊýÖУ¬ÄÄЩÊDz»µÈʽ2x-5£¼1µÄ½â£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼ò£¬ÔÙÇóÖµ£®£¨$\sqrt{x}$-$\frac{x}{x+\sqrt{x}}$£©¡Â$\frac{x-\sqrt{x}}{\sqrt{x}}$£¬ÆäÖÐx=2+$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬Ôڱ߳¤Îª3µÄÕý·½ÐÎABCDÖУ¬EΪBCÉϵÄÒ»µã£¬ÇÒEC=$\frac{1}{3}$BC£¬¹ýE×÷EF¡ÍAE½»CDÓÚF£¬Á¬½ÓAF£¬°Ñ¡÷AEFÑØAF·­ÕÛµ½¡÷AGF£¬Ê¹EµãÂäÔÚG´¦£¬Á¬½ÓDG£¬ÔòDG=$\frac{2\sqrt{10}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª£¨x+y£©2=3£¬£¨x-y£©2=7£¬Ôò»¯¼ò[£¨xy+2£©£¨xy-2£©-2x2y2+4]¡Â£¨$\frac{1}{2}$xy£©µÄֵΪ£¨¡¡¡¡£©
A£®2B£®-2C£®4D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®$\frac{1}{\sqrt{3}-\sqrt{2}}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$µÄÖµÊÇ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®2C£®0D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸