精英家教网 > 初中数学 > 题目详情
在△ABC中,P是BA延长线上一点,AE是∠CAP的平分线,CE⊥AE于E,BD⊥EA延长线于D.
(1)若四边形BCED是正方形(如图①),AB、AC分别于CD、BE相交于点M、N,求证:△ADM≌△AEN.
(2)如图②,若AD=kAE,BE、CD相交于F.试探究EF、BF之间的数量关系,并说明理由.(用含k的式子表示)

【答案】分析:(1)先根据对顶角相等得出∠DAB=∠PAE,再由AE平分∠PAC,∠DAB=∠EAC,根据四边形BCED是正方形,可知BD=CE,∠BDA=∠CEA=90°,由ASA定理得出△DAB≌△EAC(ASA),故可得出AD=AE,再由BE、CD是正方形BCDE的对角线可知∠MDA=∠NEA,由此即可得出结论;
(2)由(1)得∠DAB=∠EAC,再由相似三角形的判定定理得出△ABD∽△ACE,由AD=kAE可知==k,根据BD∥CE,可得出∠FDB=∠FCE,∠FBD=∠FEC,故△DFB∽△CFE,根据相似三角形的性质可知==k,由此即可得出结论.
解答:(1)证明:∵∠DAB=∠PAE,AE平分∠PAC,
∴∠DAB=∠EAC,
又∵四边形BCED是正方形,
∴BD=CE,∠BDA=∠CEA=90°,
∴∠ABD=∠ACE,
在△DAB与△EAC中,

∴△DAB≌△EAC(ASA),
∴AD=AE,
∵BE、CD是正方形BCDE的对角线,
∴∠MDA=∠NEA,
在△ADM与△AEN中,

∴△ADM≌△AEN(SAS);

(2)猜想:BF=kEF(或EF=BF).
证明:由(1)得∠DAB=∠EAC,
∵∠BDA=∠CEA=90°,
∴△ABD∽△ACE,
∵AD=kAE,
==k,
∵BD∥CE,
∴∠FDB=∠FCE,∠FBD=∠FEC,
∴△DFB∽△CFE,
==k,
∴EF=kEF(或EF=BF).
点评:本题考查的是相似形综合题,涉及到全等三角形及相似三角形的判定与性质,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD得周长为13cm,则△ABC的周长是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AD是中线,G是重心,
AB
=
a
AD
=
b
,那么
BG
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

11、在△ABC中,D是边AB上一点,∠ACD=∠B,AB=9,AD=4,那么AC的长为
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD是BC边上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,则∠C=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.
探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC={90°}+
1
2
∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)

查看答案和解析>>

同步练习册答案