精英家教网 > 初中数学 > 题目详情

【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于E,交BA的延长线于点F.

(1)求证:△APD≌△CPD;
(2)求证:△APE∽△FPA;
(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.

【答案】
(1)

证明:∵ABCD是菱形,

∴DA=DC,∠ADP=∠CDP

在△APD和△CPD中,

∴△APD≌△CPD


(2)

证明:由(1)△APD≌△CPD,

得:∠PAE=∠PCD,

又由DC∥FB得:∠PFA=∠PCD

∴∠PAE=∠PFA

又∵∠APE=∠APF,

∴△APE∽△FPA


(3)

解:线段PC、PE、PF之间的关系是:PC2=PEPF,

∵△APE∽△FPA,

∴PA2=PEPF,

又∵PC=PA,

∴PC2=PEPF


【解析】(1)由菱形的性质得到判定△APD≌△CPD的条件;(2)由△APD≌△CPD判断出△APE∽△FPA;(3)由△APE∽△FPA得到 ,再等量代换即可.
【考点精析】掌握相似三角形的性质和相似三角形的判定是解答本题的根本,需要知道对应角相等,对应边成比例的两个三角形叫做相似三角形;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACBGACGDEABEDFACF

1)在图(1)中,DBC边上的中点,判断DE+DFBG的关系,并说明理由.

2)在图(2)中,D是线段BC上的任意一点,DE+DFBG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.

3)在图(3)中,D是线段BC延长线上的点,探究DEDFBG的关系.(不要求证明,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即 ,这就是著名的欧拉恒等式,有人称这样的数为不变心的数.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.

【动手一试】

试将改成两个整数平方之和的形式.

【阅读思考】

在数学思想中,有种解题技巧称之为无中生有.例如问题:将代数式改成两个平方之差的形式.解:原式

【解决问题】

请你灵活运用利用上述思想来解决不变心的数问题:将代数式改成两个整数平方之和的形式(其中abcd均为整数),并给出详细的推导过程﹒

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DBC的中点,点EF分别在线段AD及其延长线上,且DE=DF.给出下列条件:

①BE⊥EC②BF∥CE③AB=AC

从中选择一个条件使四边形BECF是菱形,你认为这个条件是 (只填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD平分∠ABC. 请补全图形后,依条件完成解答.

(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;

(2)在射线BE上任取一点F,过点F画直线FGBDBC于点G;

(3)判断∠BFG与∠BGF的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.

(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;
(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:
(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.

(1)A,B两点间的距离是________.

(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.

(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?

(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:

如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做规形图,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:

(1)观察规形图,试探究∠BDC与∠A、B、C之间的关系,并说明理由;

(2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+ACX=__________°;

②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度数;

③如图4,ABD,ACD10等分线相交于点G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度数.

查看答案和解析>>

同步练习册答案