分析:可以先猜想BD是⊙O的切线,根据切线的判定进行分析,得到OD是圆的半径,且OD⊥BD,从而可得到结论。
解答:BD是⊙O的切线。
连接OD;
∵OA=OD,
∴∠ADO=∠A=30°,
∵∠A=∠B=30°,
∴∠BDA=180°-(∠A+∠B)=120°,
∴∠BDO=∠BDA-∠ADO=90°,
即OD⊥BD,
∴BD是⊙O的切线。
理由1:连接OD,∵OA=OD,
∴∠ADO=∠A=30°,
∵∠A=∠B=30°,
∴∠BDA=180°-(∠A+∠B)=120,
∴∠BDO=∠BDA-∠ADO=90°,即OD⊥BD.
∴BD是⊙O的切线。
理由2:连接OD,
∵OA=OD,
∴∠ADO=∠A=30°,
∴∠BOD=∠ADO+A=60°,
∵∠B=30°,
∴∠BDO=180°-(∠BOD+∠B)=90°,
即OD⊥BD,
∴BD是⊙O的切线。
理由3:连接OD,∵OA=OD,
∴∠ADO=∠A=30°,
在BD的延长线上取一点E,
∵∠A=∠B=30°,
∴∠ADE=∠A+∠B=60°,
∴∠EDO=∠ADO+∠ADE=90°,即OD⊥BD
∴BD是⊙O的切线。
理由4:连接OD,∵OA=OD,
∴∠ADO=∠A=30°,
连接CD,则∠ADC=90°,
∴∠ODC=∠ADC-∠ADO=60°,
∵OD=OC,
∴∠OCD=60°,
∵∠B=30°,
∴∠BDC=∠OCD-∠B=30°,
∴∠ODB=∠ODC+∠BDC=90°,
即OD⊥BD,
∴BD是⊙O的切线。
点评:本题考查切线的判定方法及圆周角定理的综合运用。