精英家教网 > 初中数学 > 题目详情

【题目】某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C15米的距离(BEC在一条直线上),求塔AB的高度(结果保留根号).

【答案】AB的高度(12+9)米.

【解析】

过点DDFAB,则图中有两个直角三角形即△ABE和△AFD,若假设AB=x米,则在△ABE中可求出BE,又EC已知,所以BC的值就确定了为x+15,在△AFD中,DF=AFcot30°=3x-3),所以根据BC=DF则可列方程,只需解方程即可求值.

如图,过点DDF⊥AB,垂足为F

∵AB⊥BCCD⊥BC

四边形BCDF的矩形,

∴BC=DFCD=BF

AB=x米,在Rt△ABE中,∠AEB=∠BAE=45°

∴BE=AB=x

Rt△ADF中,∠ADF=30°AF=AB-BF=x-3

∴DF=AFcot30°=x-3),

∵DF=BC=BE+EC

x-3=x+15

解得x=12+9

答:塔AB的高度(12+9)米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图抛物线),下列结论错误的是(

A.ab同号B.

C.时,y值相同D.时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x3时,函数yx22x3的图象记为G,将图象Gx轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M,若直线yx+b与图象M有且只有两个公共点,则b的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)

(2)如图,小方在清明假期中到郊外放风筝,风筝飞到C 处时的线长BC20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.(,,结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴为,与轴的一个交点在之间,其部分图象如图所示,则下列结论:(1:(2;(3为任意实数);(45)点是该抛物线上的点,且,其中正确结论的个数是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线x轴交于点ABAB=2,与y轴交于点C,对称轴为直线x=2

1)求抛物线的函数表达式;

2)设P为对称轴上一动点,求△APC周长的最小值;

3)设D为抛物线上一点,E为对称轴上一点,若以点ABDE为顶点的四边形是菱形,则点D的坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角△ABC内接于圆OD为弧AC上一点,分别连接ADBDCD,且∠ACB90°﹣BAD

1)如图1,求证:ABAD

2)如图2,在CD延长线上取点E,连接AE,使AEAD,过EEF垂直BD的延长线于点F,过CCGECEF延长线于点G,设圆O半径为r,求证:EG2r

3)如图3,在(2)的条件下,连接DG,若ACBCDE4CD,当△ACD的面积为10时,求DG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则yx的图象大致为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数是常数, ).

)当该函数的图像与轴没有交点时,求的取值范围.

)把该函数的图像沿轴向上平移多少个单位长度后,得到的函数的图像与轴只有一个公共点?

查看答案和解析>>

同步练习册答案