【题目】某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).
【答案】塔AB的高度(12+9)米.
【解析】
过点D作DF⊥AB,则图中有两个直角三角形即△ABE和△AFD,若假设AB=x米,则在△ABE中可求出BE,又EC已知,所以BC的值就确定了为x+15,在△AFD中,DF=AFcot30°=3(x-3),所以根据BC=DF则可列方程,只需解方程即可求值.
如图,过点D作DF⊥AB,垂足为F,
∵AB⊥BC,CD⊥BC,
∴四边形BCDF的矩形,
∴BC=DF,CD=BF,
设AB=x米,在Rt△ABE中,∠AEB=∠BAE=45°,
∴BE=AB=x,
在Rt△ADF中,∠ADF=30°,AF=AB-BF=x-3,
∴DF=AFcot30°=(x-3),
∵DF=BC=BE+EC,
∴(x-3)=x+15,
解得x=12+9,
答:塔AB的高度(12+9)米.
科目:初中数学 来源: 题型:
【题目】当x≤3时,函数y=x2﹣2x﹣3的图象记为G,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M,若直线y=x+b与图象M有且只有两个公共点,则b的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)
(2)如图,小方在清明假期中到郊外放风筝,风筝飞到C 处时的线长BC为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.(,,结果精确到0.1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴为,与轴的一个交点在和之间,其部分图象如图所示,则下列结论:(1):(2);(3)(为任意实数);(4);5)点是该抛物线上的点,且,其中正确结论的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角△ABC内接于圆O,D为弧AC上一点,分别连接AD、BD、CD,且∠ACB=90°﹣∠BAD.
(1)如图1,求证:AB=AD;
(2)如图2,在CD延长线上取点E,连接AE,使AE=AD,过E作EF垂直BD的延长线于点F,过C作CG⊥EC交EF延长线于点G,设圆O半径为r,求证:EG=2r;
(3)如图3,在(2)的条件下,连接DG,若AC=BC,DE=4CD,当△ACD的面积为10时,求DG的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数(是常数, ).
()当该函数的图像与轴没有交点时,求的取值范围.
()把该函数的图像沿轴向上平移多少个单位长度后,得到的函数的图像与轴只有一个公共点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com