精英家教网 > 初中数学 > 题目详情
已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.
精英家教网
证明:∵四边形ABCD是正方形,
∴BC=DC,∠BCD=90°
∵E为BC延长线上的点,
∴∠DCE=90°,
∴∠BCD=∠DCE.
在△BCF和△DCE中,
BC=DC
∠BCD=∠DCE
CE=CF

∴△BCF≌△DCE(SAS),
∴DE=BF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙P与x轴切于点O,点P的坐标为(0,1),点A在⊙P上,且在第一象限,∠APO=150°,⊙P沿x轴正方向滚动,当点A第一次落在x轴上时,点P的坐标为
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,OC=OA,△ABC的面积为2.
(1)求抛物线的解析式;
(2)若平行于x轴的动直线DE从点C开始,以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E、点D,同时动点P从点B出发,在线段OB上以每秒2个单位的速度向原点O运动.当点P运动到点O时,直线DE与点P都停止运动.连接DP,设点P的运动时间为t秒.
①当t为何值时,
1
ED
+
1
OP
的值最小,并求出最小值;
②是否存在t的值,使以P,B,D为顶点的三角形与△ABC相似.若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,直线l的解析式为y=
34
x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0精英家教网.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,一次函数y=
1
2
x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=
1
2
x2+bx+c的图象与一次函数y=
1
2
x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在点P使得△PBC是以P为直角顶点的直角三角形?若存在,求出点P运动的时间t的值,若不存在,请说明理由.
(4)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似,若存在,求a的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=
ED+OPED•OP
,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案