4£®Ä³µ¥Î»Ðè²É¹ºÒ»ÅúÉÌÆ·£¬¹ºÂò¼×ÉÌÆ·10¼þºÍÒÒÉÌÆ·15¼þÐè×ʽð350Ôª£¬¶ø¹ºÂò¼×ÉÌÆ·15¼þºÍÒÒÉÌÆ·10¼þÐèÒª×ʽð375Ôª£®
£¨1£©Çó¼×¡¢ÒÒÉÌƷÿ¼þ¸÷¶àÉÙÔª£¿
£¨2£©±¾´Î¼Æ»®²É¹º¼×¡¢ÒÒÉÌÆ·¹²30¼þ£¬¼Æ»®×ʽ𲻳¬¹ý460Ôª£¬
¢Ù×î¶à¿É²É¹º¼×ÉÌÆ·¶àÉÙ¼þ£¿
¢ÚÈôÒªÇó¹ºÂòÒÒÉÌÆ·µÄÊýÁ¿²»³¬¹ý¼×ÉÌÆ·ÊýÁ¿µÄ$\frac{4}{5}$£¬Çë¸ø³öËùÓйºÂò·½°¸£¬²¢Çó³ö¸Ãµ¥Î»¹ºÂòÕâÅúÉÌÆ·×îÉÙÒªÓöàÉÙ×ʽð£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔÁгöÏàÓ¦µÄ¶þÔªÒ»´Î·½³Ì×飬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣻
£¨2£©¸ù¾ÝÌâÒâ¿ÉÒÔÁгöÏàÓ¦µÄ²»µÈʽ£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©Éè¼×ÉÌƷÿ¼þxÔª£¬ÒÒÉÌƷÿ¼þyÔª£¬
$\left\{\begin{array}{l}{10x+15y=350}\\{15x+10y=375}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{x=17}\\{y=12}\end{array}\right.$£¬
¼´¼×ÉÌƷÿ¼þ17Ôª£¬ÒÒÉÌƷÿ¼þ12Ôª£»
£¨2£©¢ÙÉè²É¹º¼×ÉÌÆ·m¼þ£¬
17m+12£¨30-m£©¡Ü460£¬
½âµÃ£¬m¡Ü20£¬
¼´×î¶à¿É²É¹º¼×ÉÌÆ·20¼þ£»
¢ÚÓÉÌâÒâ¿ÉµÃ£¬
$\left\{\begin{array}{l}{m¡Ü20}\\{30-m¡Ü\frac{4}{5}m}\end{array}\right.$£¬
½âµÃ£¬$16\frac{2}{3}¡Üm¡Ü20$£¬
¡à¹ºÂò·½°¸ÓÐËÄÖÖ£¬
·½°¸Ò»£º¼×ÉÌÆ·20¼þ£¬ÒÒÉÌÆ·10¼þ£¬´Ëʱ»¨·ÑΪ£º20¡Á17+10¡Á12=460£¨Ôª£©£¬
·½°¸¶þ£º¼×ÉÌÆ·19¼þ£¬ÒÒÉÌÆ·11¼þ£¬´Ëʱ»¨·ÑΪ£º19¡Á17+11¡Á12=455£¨Ôª£©£¬
·½°¸Èý£º¼×ÉÌÆ·18¼þ£¬ÒÒÉÌÆ·12¼þ£¬´Ëʱ»¨·ÑΪ£º18¡Á17+12¡Á12=450£¨Ôª£©£¬
·½°¸ËÄ£º¼×ÉÌÆ·17¼þ£¬ÒÒÉÌÆ·13¼þ£¬´Ëʱ»¨·ÑΪ£º17¡Á17+13¡Á12=445£¨Ôª£©£¬
¼´¹ºÂò¼×ÉÌÆ·17¼þ£¬ÒÒÉÌÆ·13¼þʱ»¨·Ñ×îÉÙ£¬×îÉÙÒªÓÃ445Ôª£®

µãÆÀ ±¾Ì⿼²éÒ»ÔªÒ»´Î²»µÈʽµÄÓ¦ÓᢶþÔªÒ»´Î·½³Ì×éµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³É̳¡Òò»»¼¾£¬½«Ò»Æ·ÅÆ·þ×°´òÕÛÏúÊÛ£¬Ã¿¼þ·þ×°Èç¹û°´±ê¼ÛµÄÁùÕÛ³öÊÛ½«¿÷4Ôª£¬¶ø°´±ê¼ÛµÄ°ËÕÛ³öÊÛ½«×¬28Ôª£¬ÎÊ£º
£¨1£©Ã¿¼þ·þ×°µÄ±ê¼ÛºÍ³É±¾·Ö±ðÊǶàÉÙÔª£¿
£¨2£©ÎªÊ¹ÏúÊÛ¸ÃÆ·ÅÆ·þװÿ¼þ»ñµÃ20%µÄÀûÈóÂÊ£¬Ó¦°´±ê¼ÛµÄ¼¸ÕÛ³öÊÛ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®½«1ÕÅ0.1ºÁÃ׺ñµÄ°×Ö½¶ÔÕÛ11´Îºó£¬Æäºñ¶ÈΪ0.1¡Á211ºÁÃ×£¨Ö»ÒªÇóÁгöËãʽ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÒÑÖªÕý·½ÐÎOABCµÄ±ß³¤Îª4£¬¶¥µãA¡¢C·Ö±ðÔÚxÖáµÄ¸º°ëÖáºÍyÖáµÄÕý°ëÖáÉÏ£¬MÊÇBCµÄÖе㣮P£¨0£¬n£©ÊÇÏ߶ÎOCÉÏÒ»¶¯µã£¨Cµã³ýÍ⣩£¬Ö±ÏßPM½»ABµÄÑÓ³¤ÏßÓÚµãD£®
£¨1£©ÇóµãDµÄ×ø±ê£¨Óú¬nµÄ´úÊýʽ±íʾ£©£»
£¨2£©µ±¡÷APDÊÇÒÔPAΪÑüµÄµÈÑüÈý½ÇÐÎʱ£¬ÇóDµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈôÒ»¸öÕýÁù±ßÐεÄÖܳ¤Îª24£¬Ôò¸ÃÕýÁù±ßÐεıßÐľàΪ£¨¡¡¡¡£©
A£®2$\sqrt{3}$B£®4C£®3$\sqrt{3}$D£®12$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖªµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨0£¬0£©¡¢£¨2£¬0£©£¬½«¡÷ABCÈÆCµã°´Ë³Ê±Õë·½ÏòÐýת90¡ãµÃµ½¡÷A1B1C£®
£¨¢ñ£©»­³ö¡÷A1B1C£»
£¨¢ò£©AµÄ¶ÔÓ¦µãΪA1£¬Ð´³öµãA1µÄ×ø±ê£»
£¨¢ó£©Çó³öBB1µÄ³¤£®£¨Ö±½Ó×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÓÃËÄÉáÎåÈë·¨£¬°Ñ5.395¾«È·µ½°Ù·ÖλµÄ½á¹ûÊÇ5.40£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬EÊÇAD±ßµÄÖе㣬BE¡ÍAC£¬´¹×ãΪµãF£¬Á¬½ÓDF£¬ÏÂÃæËĸö½áÂÛ£º¢Ù¡÷AEF¡×¡÷CAB£»¢ÚCF=2AF£»¢ÛDF=DC£»¢Ütan¡ÏCAD=$\frac{\sqrt{2}}{2}$£¬ÆäÖÐÕýÈ·µÄ½áÂÛÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺$\sqrt{3}$tan30¡ã-£¨¦Ð-3£©0+|-2|

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸