精英家教网 > 初中数学 > 题目详情

【题目】以正方形ABCD的边AD作等边ADE,则∠BEC的度数是_____

【答案】30°150°.

【解析】

分等边ADE在正方形的内部和外部两种情况分别求解即可得.

如图1,

∵四边形ABCD为正方形,ADE为等边三角形,

AB=BC=CD=AD=AE=DE,BAD=ABC=BCD=ADC=90°,AED=ADE=DAE=60°,

∴∠BAE=CDE=150°,又AB=AE,DC=DE,

∴∠AEB=CED=15°,

则∠BEC=AED﹣AEB﹣CED=30°;

如图2,

∵△ADE是等边三角形,

AD=DE,

∵四边形ABCD是正方形,

AD=DC,

DE=DC,

∴∠CED=ECD,

∴∠CDE=ADC﹣ADE=90°﹣60°=30°,

∴∠CED=ECD=×(180°﹣30°)=75°,

∴∠BEC=360°﹣75°×2﹣60°=150°,

故答案为:30°150°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标;
(2)求△ABC的面积;
(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.

(1)求证:AC垂直平分EF;
(2)试判断△PDQ的形状,并加以证明;
(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,分别平分,则________,若分别平分的外角平分线,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.

(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;
(2)求此次任务的清雪总量m;
(3)求乙队调离后y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为 上一点,连接AP,CP,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D,F分别在边AC,BC上,易证:AD=BF(不需要证明);

(1)探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD,BF,其他条件不变,如图②,求证:AD=BF;
(2)应用:若α=45°,CD= ,BE=1,如图③,则BF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OAOB相交于MN两点,则以下结论:(1PM=PN恒成立;(2OM+ON的值不变;(3)四边形PMON的面积不变;(4MN的长不变,其中正确的个数为(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程.
(1)(x﹣1)2=4;
(2)x2+3x﹣4=0;
(3)4x(2x+1)=3(2x+1);
(4)2x2+5x﹣3=0.

查看答案和解析>>

同步练习册答案