精英家教网 > 初中数学 > 题目详情

【题目】如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

(1)求证:DE是⊙O的切线;
(2)若DE=6,AE= ,求⊙O的半径;
(3)在第(2)小题的条件下,则图中阴影部分的面积为

【答案】
(1)解:连接OD,

∵OA=OD,

∴∠OAD=∠ODA,

∵AD平分∠CAM,∠OAD=∠DAE,

∴∠ODA=∠DAE,

∴DO∥MN,

∵DE⊥MN,

∴DE⊥OD,

∵D在⊙O上,

∴DE是⊙O的切线;


(2)解:∵∠AED=90°,DE=6,AE=2

∴AD= = =4

连接CD,

∵AC是⊙O的直径,

∴∠ADC=∠AED=90°,

∵∠CAD=∠DAE,

∴△ACD∽△ADE,

∴AC=8

∴⊙O的半径是4


(3)解:8π﹣12
【解析】解:(3)过点O作OF⊥AB于F,
∵cos∠DAE=
∴∠DAE=60°,
∴∠DAC=60°,
∴∠CAB=60°,
∴∠AOF=30°,
∴∠AOB=60°,
∴cos∠CAB= =
∴AF=2
∴OF=6,
∴S阴影=S扇形﹣SOAB=8π﹣12

【考点精析】掌握勾股定理的概念和切线的判定定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数 (m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一动点,G是BC边上的一动点,GE∥AD分别交AC、BA或其延长线于F、E两点

(1)如图1,当BC=5BD时,求证:EG⊥BC;
(2)如图2,当BD=CD时,FG+EG是否发生变化?证明你的结论;
(3)当BD=CD,FG=2EF时,DG的值=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)| ﹣2|+20140﹣(﹣ 1+3tan30°
(2)先化简:1﹣ ÷ ,再选取一个合适的a值代入计算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,A=40°B=70°,CE平分ACB,CDAB于D,DFCE,则CDF= 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=a(x﹣3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=﹣ x2﹣2于点B,则A、B两点间的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=4,点P从点C出发沿CA以每秒1个单位长度的速度向终点A运动:同时,点Q从点C出发沿CB﹣BA运动,点Q在CB上的速度为每秒2个单位长度,在BA上的速度为每秒 个单位长度,当点P到达终点A时,点Q随之停止运动.以CP、CQ为邻边作CPMQ,设CPMQ与△ABC重叠部分图形的面积为y(平方单位),点P的运动时间为x(秒).

(1)当点M落在AB上时,求x的值.
(2)当点Q在边CB上运动时,求y与x的函数关系式.
(3)在P、Q两点整个运动过程中,当CPMQ与△ABC重叠部分图形不是四边形时,求x的取值范围.
(4)以B、C、M为顶点的三角形是等腰三角形时,直接写出CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.

(1)旋转中心是点 , 旋转角度是度;
(2)若连结EF,则△AEF是三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.

查看答案和解析>>

同步练习册答案