精英家教网 > 初中数学 > 题目详情
如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:精英家教网
①AG=CE         ②DG=DE
③BG-AC=CE      ④S△BDG-S△CDE=
1
2
S△ABC
其中总是成立的是(  )
A、①②③B、①②③④
C、②③④D、①②④
分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=EC,DG=DE,由此可分别判断.
解答:解:连DA,如图,精英家教网
∵△ABC是等腰直角三角形,D点为BC的中点,
∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,
∴∠GAD=∠ECD=135°,
又∵△DEF是一个含30°角的直角三角形,
∴∠EDF=90°,
∴∠1=∠2,
∴△DAG≌△DCE,
∴AG=EC,DG=DE,所以①②正确;
∵AB=AC,
∴BG-AC=BG-AB=AG=EC,所以③正确;
∵S△BDG-S△CDE=S△BDG-S△ADG=S△ADB=
1
2
S△ABC.所以④正确.
故选B.
点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC是等腰三角形,AB=AC,D为直线BC上一点,DE⊥AC,DF⊥AB,CH⊥AB,
(1)如图(1)若D为BC的中点,求证:DE+DF=CH.
(2)如图(2)若D为BC延长线上一点,其他条件不变,线段DE.DF.CH 之间有何数量关系,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等腰直角三角形,D为斜边AB上任意一点(不与A,B重合),连接CD,作EC⊥DC,且EC=DC,连接AE.
(1)求证:∠E+∠ADC=180°.
(2)猜想:当点D在何位置时,四边形AECD是正方形?说明理由.

查看答案和解析>>

同步练习册答案