精英家教网 > 初中数学 > 题目详情
若根式有意义,则双曲线与抛物线的交点在第  象限.
二.

试题分析:根据题意得,2﹣2k>0,∴2k﹣2<0.
∴反比例函数的图象位于第二、四象限.
∵抛物线的对称轴为直线,与y轴的交点为(0,2﹣2k)在y轴正半轴,
∴抛物线的图象不经过第四象限.
∴双曲线与抛物线的交点在第二象限.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知:为边长是的等边三角形,四边形为边长是6的正方形. 现将等边和正方形按如图①的方式摆放,使点与点重合,点在同一条直线上,从图①的位置出发,以每秒1个单位长度的速度沿方向向右匀速运动,当点与点重合时暂停运动,设的运动时间为秒().

(1)在整个运动过程中,设等边和正方形重叠部分的面积为,请直接写出之间的函数关系式;
(2)如图②,当点与点重合时,作的角平分线于点,将绕点逆时针旋转,使边与边重合,得到. 在线段上是否存在点,使得为等腰三角形. 如果存在,求线段的长度;若不存在,请说明理由.
(3)如图③,若四边形为边长是的正方形,的移动速度为每秒 个单位长度,其余条件保持不变. 开始移动的同时,点从点开始,沿折线以每秒个单位长度开始移动,停止运动时,点也停止运动. 设在运动过程中,交折线点,则当时,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).

(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点)。已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?S最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若将函数的图像向右平行移动1个单位,则它与直线的交点坐标是(   )
A.(-3,0)和(5,0)B.(-2,b)和(6,b)
C.(-2,0)和(6,0)D.(-3,b)和(5,b)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-2B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一个开口向下、且经过点(-1,2)的二次函数的表达式                

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数的图象如图所示,则下列结论中:①;②;③;④.正确的是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象的顶点坐标是(    )
A.(-1,3)B.(1,3)C.(1,-3)D.(-1,-3)

查看答案和解析>>

同步练习册答案