分析 (1)由菱形ABCD中,∠ADB=60°,可证得△ABD与△CBD是等边三角形,继而可得BD=BC,证得△BDE≌△BCF,即可得AE+CF=AE+DE=AD=BD=5$\sqrt{3}$;
(2)由△BDE≌△BCF,可得BE=BF,又由∠EBF=60°,即可证得△BEF是等边三角形.
解答 解:(1)∵四边形ABCD是菱形,
∴AD=AB,
∵∠ADB=60°,
∴△ABD是等边三角形,
同理:△BCD是等边三角形,
∴AD=BD=BC,∠ADB=∠C=60°,
∴∠EBF=∠DBC=60°,
∴∠EBD=∠FBC,
在△DEB和△CFB中,
$\left\{\begin{array}{l}{∠EBD=∠FBC}\\{BD=BC}\\{∠BDE=∠C}\end{array}\right.$,
∴△DEB≌△CFB(ASA),
∴DE=CF,
∴AE+CF=AE+DE=AD=BD=5$\sqrt{3}$;
(2)△BEF是等边三角形,
理由:∵△EDB≌△FCB,
∴BE=BF,
∵∠EBF=60°,
∴△BEF是等边三角形.
点评 此题考查了菱形的性质、全等三角形的判定与性质以及等边三角形的判定与性质.注意证得△ABD与△CBD是等边三角形,继而证得△BDE≌△BCF是关键.
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①②④ | C. | 只有②④ | D. | 只有①④ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com