精英家教网 > 初中数学 > 题目详情

【题目】如图,把Rt△ACO以O点为中心,逆时针旋转90°,得Rt△BDO,点B坐标为(0,﹣3),点C坐标为(0, ),抛物线y=﹣ x2+bx+c经过点A和点C.

(1)求b,c的值;
(2)在x轴以上的抛物线对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由
(3)点P从点O出发沿x轴向负半轴运动,每秒1个单位,过点P作y轴的平行线交抛物线于点M,当t为几秒时,以M、P、O、C为顶点得四边形是平行四边形?

【答案】
(1)

解:由旋转知:OA=OB=3.

∴A(﹣3,0).


(2)

解:存在,有2个Q点,坐标分别为:(﹣1, );(﹣1, ).

解答如下:设Q(﹣1,t).

∵A(﹣3,0),C(0, ),

∴AC= =2

①当AC=AQ时,2 =

解得t=2 ,即Q(﹣1, );

②当AC=CQ时,2 =

解得t= ,即Q(﹣1, ).


(3)

解:∵OC= ,当 M、P、O、C为顶点得四边形是平行四边形时,PM=

∴M点的纵坐标为 或﹣

解之,x=﹣2或0

解之,x=﹣1+ 或﹣1﹣

结合条件及图形分析得:OP=2或 +1,

∴当t=2或 +1秒时,以M、P、O、C为顶点得四边形是平行四边形.


【解析】(1)由旋转的性质得OA=OB=3,从而得到点A的坐标,把点A、C的坐标分别代入函数解析式,然后利用待定系数法求b,c的值;(2)根据题意作出图形,结合图形易得点Q的坐标;(3)根据平行四边形的对边相等的性质和坐标与图形的性质进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.

(1)a=______,b=______,c=______;

(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;

(3)A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).

(4)直接写出点BAC中点时的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,纸片ABCD中,AD=5,,过点A作AE⊥BC,垂足为E,沿AE剪下,将它平移至的位置,拼成四边形,则四边形的形状为_____

A.平行四边形 B.菱形 C.矩形 D.正方形

(2)如图2,在(1)中的四边形中,在EF上取一点P,EP=4,剪下,将它平移至的位置,拼成四边形。①求证:四边形是菱形;②求四边形的两条对角线的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B,求∠ACD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小青在本学期的数学成绩如下表所示(成绩均取整数):

(1)计算小青本学期的平时平均成绩;

(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC绕AB旋转一周,所得几何体的表面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两名运动员,选择一人参加市射击比赛,在选拔赛上,每人打10发,其中甲的射击成绩分别为10、8、7、9、8、10、10、9、10、9

计算甲的射击成绩的方差;

经过计算,乙射击的平均成绩是9,方差为1.4,你认为选谁去参加市射击比赛合适,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点OCAB的平分线分别交BDBCEF,作BHAF于点H分别交ACCD于点GP,连结GEGF

1)求证:OAE≌△OBG

2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案