精英家教网 > 初中数学 > 题目详情
某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.

【答案】分析:(1)由OB=1,AB=6,可求点A、B的坐标;
(2)要求墙高BC,可先求出抛物线的关系式.由C点的横坐标为1,代入函数关系式中可求函数y的值即墙高BC.
解答:解:(1)由题意得:
A(-5,0),B(1,0).(2分)

(2)设y=ax2+2.5,把A(-5,0)代入
得25a+2.5=0,a=-0.1,
即y=-0.1x2+2.5.(6分)
当x=1时,y=-0.1+2.5=2.4
即墙高BC为2.4米.(8分)
点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.

查看答案和解析>>

科目:初中数学 来源:吉林省中考真题 题型:解答题

某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米,借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC。

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(26):2.3 二次函数的应用(解析版) 题型:解答题

某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(24):23.5 二次函数的应用(解析版) 题型:解答题

某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.

查看答案和解析>>

同步练习册答案