11£®Ä³Ð£ÀûÓú®¼Ù½øÐпƼ¼Êµ¼ù»î¶¯£¬¿ªÑ§Ö®³õ°Ë£¨1£©°à¶Ô¸÷×éÉϽ»µÄ¡°¿Æ¼¼×÷Æ·¡±µÄÊýÁ¿½øÐÐÁËͳ¼Æ£¬²¢»æÖÆÁËÈçͼµÄÕÛÏßͳ¼Æͼ£®
£¨1£©°Ë£¨1£©°à¹²ÊÕµ½µÄ¡°¿Æ¼¼×÷Æ·¡±¶àÉÙ¼þ£¿
£¨2£©Çó°Ë£¨1£©°à¸÷×éÊÕµ½µÄ¡°¿Æ¼¼×÷Æ·¡±µÄƽ¾ùÊý¡¢ÖÚÊýºÍÖÐλÊý£®
£¨3£©ÔÚÉϽ»µÄ×÷Æ·ÖÐÓÐ4¼þ×÷Æ·ÖÆ×÷¾«Á¼£¬Ë®Æ½Ï൱£¨·Ö±ð¼ÇΪA£¬B£¬C£¬D£©£¬°àί»á½«Ñ¡³öÆäÖеÄÁ½¼þ×÷Æ·Ë͵½Ñ§Ð£²Î¼ÓÆÀÓÅ£¬Çó³éµ½µÄ×÷Æ·Ç¡ºÃÊÇAºÍBµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÀûÓÃÕÛÏßͳ¼ÆͼµÃµ½¸÷µÈ¼¶µÄ×÷Æ·¼þÊý£¬È»ºó°ÑµÈ¼¶µÄ¼þÊýÏà¼Ó¼´¿É£»
£¨2£©¸ù¾Ýƽ¾ùÊý¡¢ÖÚÊýºÍÖÐλÊýµÄ¶¨ÒåÇó½â£»
£¨3£©ÏÈ»­Ê÷״ͼչʾËùÓÐ12ÖֵȿÉÄܵĽá¹ûÊý£¬ÔÙÕÒ³ö³éµ½µÄ×÷Æ·Ç¡ºÃÊÇAºÍBµÄ½á¹ûÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½¼ÆË㣮

½â´ð ½â£º£¨1£©10+8+9+15+8=50£¬
ËùÒÔ°Ë£¨1£©°à¹²ÊÕµ½µÄ¡°¿Æ¼¼×÷Æ·¡±50¼þ£»
£¨2£©Æ½¾ùÊý=$\frac{1}{5}$¡Á50=10£¨¼þ£©£¬
ÖÚÊýΪËĵȼ¶£¬ÖÐλÊýΪÈýµÈ¼¶£»
£¨3£©»­Ê÷״ͼΪ£º

¹²ÓÐ12ÖֵȿÉÄܵĽá¹ûÊý£¬ÆäÖг鵽µÄ×÷Æ·Ç¡ºÃÊÇAºÍBµÄ½á¹ûÊýΪ2£¬
ËùÒԳ鵽µÄ×÷Æ·Ç¡ºÃÊÇAºÍBµÄ¸ÅÂÊ=$\frac{2}{12}$=$\frac{1}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨»òÊ÷״ͼ·¨£ºÍ¨¹ýÁÐ±í·¨»òÊ÷״ͼ·¨Õ¹Ê¾ËùÓеȿÉÄܵĽá¹ûÇó³ön£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó³öʼþA»òBµÄ¸ÅÂÊ£®Ò²¿¼²éÁËÖÚÊý¡¢ÖÐλÊýºÍͳ¼Æͼ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁи÷ÊýÖУ¬×îСµÄÊýΪ£¨¡¡¡¡£©
A£®-3B£®-2C£®0D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼÊÇÒ»¸öÓÉ5¸öÏàͬµÄÕý·½Ìå×é³ÉµÄÁ¢ÌåͼÐΣ¬ËüµÄ¸©ÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Õý·½ÐÎABCD±ß³¤Îª4cm£¬µãE£¬M·Ö±ðÊÇÏ߶ÎAC£¬CDÉϵĶ¯µã£¬Á¬½ÓDE²¢ÑÓ³¤£¬½»Õý·½ÐÎABCDµÄ±ßÓÚµãF£¬¹ýµãM×÷MN¡ÍDFÓÚH£¬½»ADÓÚN£®
£¨1£©Èçͼ1£¬ÈôµãMÓëµãCÖغϣ¬ÇóÖ¤£ºDF=MN£»
£¨2£©Èçͼ2£¬ÈôµãM´ÓµãC³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÑØCDÏòµãDÔ˶¯£¬µãEͬʱ´ÓµãA³ö·¢£¬ÒÔ$\sqrt{2}$cm/sËÙ¶ÈÑØACÏòµãCÔ˶¯£¬Ô˶¯Ê±¼äΪt£¨t£¾0£©£»
¢Ùµ±µãFÊDZßABµÄÖеãʱ£¬ÇótµÄÖµ£»
¢ÚÁ¬½áFM£¬FN£¬µ±tΪºÎֵʱ¡÷MNFÊǵÈÑüÈý½ÇÐΣ¨Ö±½Óд³ötÖµ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÈçͼËùʾ£¬·´±ÈÀýº¯Êýy=$\frac{a}{x}$ÓëÕý±ÈÀýº¯Êýy=bxÔÚͬһ×ø±êϵÖеĴóÖÂͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈçͼÊÇÒ»¸öÕý·½Ìå½ØÈ¥Ò»½ÇºóµÃµ½µÄ¼¸ºÎÌ壬ËüµÄ×óÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÒ»´Î¡°Ï×°®ÐÄ¡±¾è¿î»î¶¯ÖУ¬¾ÅÄê1°àͬѧÈËÈËÄóö×Ô¼ºµÄÁ㻨Ǯ£¬Ó»Ô¾¾è¿î£¬Ñ§Éú¾è¿î¶îÓÐ5Ôª¡¢10Ôª¡¢15Ôª¡¢20ÔªËÄÖÖÇé¿ö£®¸ù¾Ýͳ¼ÆÊý¾Ý»æÖÆÁËͼ¢ÙºÍͼ¢ÚÁ½·ùÉв»ÍêÕûµÄͳ¼Æͼ£®
£¨1£©Ñ§Éú¾è¿îµÄÖÚÊýÊÇ10£¬¸Ã°à¹²ÓжàÉÙÃûͬѧ£¿
£¨2£©Ç뽫ͼ¢ÚµÄͳ¼Æͼ²¹³äÍêÕû£»²¢¼ÆËãͼ¢ÙÖС°10Ôª¡±ËùÔÚÉÈÐζÔÓ¦µÄÔ²ÐĽǶÈÊý£»
£¨3£©¼ÆËã¸Ã°àͬѧƽ¾ù¾è¿î¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬µãEÊDZßADÉÏÒ»µã£¬ÇÒAE=2ED£¬EC½»¶Ô½ÇÏßBDÓÚµãF£¬Ôò$\frac{EF}{FC}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{2}{3}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{3£¨x+2£©£¾x+4}\\{\frac{x}{4}¡Ý\frac{x-1}{3}}\end{array}\right.$£¬²¢°ÑËüµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸