精英家教网 > 初中数学 > 题目详情
(2013•闸北区一模)根据二次函数y=-x2+2x+3的图象,判断下列说法中,错误的是(  )
分析:把二次函数写成顶点式形式,再根据二次函数的对称轴,增减性对各选项分析判断后利用排除法求解.
解答:解:y=-x2+2x+3=-(x-1)2+4,
A、二次函数y=-x2+2x+3的对称轴为直线x=-
2
2×(-1)
=1,故本选项错误;
B、当x=1时,y最大值为4,所以x>0时,y≤4,故本选项正确;
C、当x≤1时,函数值y是随着x的增大而增大正确,故本选项错误;
D、令y=0,则-x2+2x+3=0,
即x2-2x-3=0,
解得x1=-1,x2=3,
所以,当y≥0时,x的取值范围是-1≤x≤3正确,故本选项错误.
故选B.
点评:本题考查了二次函数的性质,主要利用了对称轴解析式,二次函数的增减性,与x轴的交点坐标的求解,是基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,二次函数y=
2
3
x2-
4
3
x-
16
3
的图象与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为Q,直线QB与y轴交于点E.
(1)求点E的坐标;
(2)在x轴上方找一点C,使以点C、O、B为顶点的三角形与△BOE相似,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)在坡度为i=1:2.4的斜坡上每走26米就上升了
10
10
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点M、N分别在边AO和边OD上,且AM=
2
3
AO,ON=
1
3
OD,设
AB
=
a
BC
=
b
,试用
a
b
的线性组合表示向量
OM
和向量
MN

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,EC和BD相交于点O,联接DE.
(1)求证:△EOD∽△BOC;
(2)若S△EOD=16,S△BOC=36,求
AEAC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,AB=AC=15,cos∠A=
45
.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.
(1)求底边BC的长;
(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;
(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案