精英家教网 > 初中数学 > 题目详情
如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,
(1)试说明:△FBD≌△ACD;
(2)延长BF交AC于E,且BE⊥AC,试说明:CE=
12
BF

(3)在(2)的条件下,若H是BC边的中点,连接DH与BE相交于点G.试探索CE,GE,BG之间的数量关系,并说明理由.
分析:(1)由已知等腰直角三角形△DBC可推出DB=DC,且∠BDF=∠ADC=90°,与已知DA=DF通过SAS证得△FBD≌△ACD;
(2)先由(1)△FBD≌△ACD得出BF=AC,再由BF平分∠DBC和BE⊥AC通过ASA证得△ABE≌△CBE,即得CE=AE=
1
2
AC,从而得出结论;
(3)连接CG,由H是BC边的中点和等腰直角三角形△DBC得出BG=CG,再由直角三角形CEG得出CG2=CE2+GE2,从而得出CE,GE,BG的关系.
解答:解:(1)∵DB=DC,∠BDF=∠ADC=90°
又∵DA=DF,
∴△BFD≌△ACD;

(2)∵△BFD≌△ACD,
∴BF=AC,
又∵BF平分∠DBC,
∴∠ABE=∠CBE,
又∵BE⊥AC,
∴∠AEB=∠CEB,
又∵BE=BE,
∴△ABE≌△CBE,
∴CE=AE=
1
2
AC,
∴CE=
1
2
AC=
1
2
BF;

(3)CE,GE,BG之间的数量关系为:CE2+GE2=BG2
连接CG.
∵BD=CD,H是BC边的中点,
∴DH是BC的中垂线,
∴BG=CG,
 在Rt△CGE中有:CG2=CE2+GE2
∴CE2+GE2=BG2
点评:此题考查的知识点是等腰直角三角形的性质、全等三角形的判定与性质及线段垂直平分线的性质,运用好SAS、ASA判定三角形全等及勾股定理是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图:已知在等腰直角三角形ABC中,∠C=90°,AC=BC=2,将一个含30°的直角三角形DEF的最小内角所在的顶点D与直角三角形ABC的顶点C重合,当△DEF绕着点C旋转时,较长的直角边和斜边始终与线段BA交于G,H两点(G,H可以与B,A重合)
(1)如图(1),当∠BCF等于多少度时,△BCG≌△ACH?请给予证明;
(2)如图(2),设GH=x,阴影部分(两三角形重叠部分)面积为y,写出y与x的函数关系式;当x为何值时,y最大,并求出最大值.(结果保留根号)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知在等腰直角三角形ABC中,∠BAC=90°,E为AB上任意一点,以CE为斜边作等腰直角三角形CDE,连接AD,那么AD∥BC吗?(直接回答,不用过程)
如图②,若三角形ABC为任意等腰三角形AB=AC,E为AB上任意一点,△ABC∽△DEC.连接AD,那么AD∥BC吗?若平行,请证明.若不平行,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,
(1)试说明:△FBD≌△ACD;
(2)试说明:△ABC是等腰三角形;
(3)试说明:CE=
12
BF.

查看答案和解析>>

科目:初中数学 来源:2013届浙江省杭州市萧山临浦片八年级12月月考数学卷 题型:解答题

(本题10分)如图,已知在等腰直角三角形中,平分,与相交于点,延长,使

1.(1)试说明:

2.(2)延长,且,)试说明:

3.(3)在⑵的条件下,若边的中点,连结相交于点

试探索,之间的数量关系,并说明理由

 

查看答案和解析>>

同步练习册答案