分析 作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC=∠CDO,等量代换即可.
解答 解:作直径CD,
在Rt△OCD中,CD=6,OC=2,
则OD=$\sqrt{C{D}^{2}-O{C}^{2}}$=4$\sqrt{2}$,
tan∠CDO=$\frac{OC}{OD}$=$\frac{\sqrt{2}}{4}$,
由圆周角定理得,∠OBC=∠CDO,
则tan∠OBC=$\frac{\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{2}}{4}$.
点评 本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
植树品种 | 甲种 | 乙种 | 丙种 | 丁种 |
植树棵数 | 150 | 125 | 125 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | SAS | B. | ASA | C. | AAS | D. | SSS |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com