【题目】如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=4,AB=2,则DE的长为__________.
【答案】
【解析】
先根据折叠的性质得∠C′BD=∠CBD,再利用矩形的性质得AD∥BC,则∠EDB=∠CBD,所以∠EDB=∠C′BD,根据等腰三角形的判定定理得EB=ED,设AE=x,则ED=AD-AE=4-x,BE=4-x,在Rt△ABE中,根据勾股定理得22+x2=(4-x)2,然后解方程即可.
∵矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,
∴∠C′BD=∠CBD,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠EDB=∠CBD,
∴∠EDB=∠C′BD,
∴EB=ED,
设AE=x,则ED=AD-AE=4-x,BE=4-x,
在Rt△ABE中,
∵AB2+AE2=BE2,
∴22+x2=(4-x)2,解得x=2.5,
即AE的长为2.5.
故答案为2.5.
科目:初中数学 来源: 题型:
【题目】如图1,在中,
是BC上的一点,以AD为边作
,使
.
(1)直接用含的式子表示
的度数是_______________;
(2)以为边作平行四边形
;
①如图2,若点F恰好落在DE上,试判断线段BD与线段CD的长度是否相等,并说明理由.
②如图3,若点F落在是DE上,且,求线段CF的长(直接写出结果,不说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标( )
A.(-1,)B.(
)C.
D.(-2,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,CA=CB,CD∥AB,CD与OA的延长线交于点D.
(1)求证:CD 是⊙O 的切线;
(2)若∠ACB=120°,OA=2,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,O是矩形ABCD的对角线的交点,作DE//AC,CE//BD,DE、CE相交于点E.
求证:(1)四边形OCED是菱形.
(2)连接OE,若AD=5,CD=3,求菱形OCED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点 A(1,0)作x轴的垂线,交反比例函数 y= (x大于零)的图象交于点M,已知三角形AOM的面积为3.
(1)求k的值;
(2)设点B的坐标为(t,0), 若以AB为一边的正方形ABCD有顶点在该反比例函数的图像上,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某司机在东西路上开车接送乘客,他早晨从A地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)
+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14
(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?
(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com