精英家教网 > 初中数学 > 题目详情
11.在数学课上,老师提出如下问题:
如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
小明的折叠方法如下:
如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D; (2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
老师说:“小明的作法正确.”
请回答:小明这样折叠的依据是CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).

分析 根据折叠的性质得到CD和EF互相垂直且平分,结合菱形的判定定理“对角线互相垂直平分的四边形是菱形”证得结论.

解答 解:如图,连接DF、DE.
根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.
则四边形DECF恰为菱形.
故答案是:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).

点评 本题考查了菱形的判定,翻折变换(折叠问题).
总结:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
②四条边都相等的四边形是菱形.
③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.四边形ABCD是正方形,点E在边BC上(不与端点B、C重合),点F在对角线AC上,且EF⊥AC,连接AE,点G是AE的中点,连接DF、FG
(1)若AB=7$\sqrt{2}$,BE=$\sqrt{2}$,求FG的长;
(2)求证:DF=$\sqrt{2}$FG;
(3)将图1中的△CEF绕点C按顺时针旋转,使边CF的顶点F恰好在正方形ABCD的边BC上(如图2),连接AE、点G仍是AE的中点,猜想BF与FG之间的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.当m为何值时,分式方程$\frac{2}{x-2}$+$\frac{mx}{{x}^{2}-4}$=0无解?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若一次函数y=kx+b的图象经过点P(-2,3),则2k-b的值为(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,将矩形纸片ABCD置于直角坐标系中,点A(4,0),点B(0,3),点D(异于点B、C)为边BC上动点,过点O、D折叠纸片,得点B′和折痕OD.过点D再次折叠纸片,使点C落在直线DB′上,得点C′和折痕DE,连接OE,设BD=t.
(1)当t=1时,求点E的坐标;
(2)设S四边形OECB=s,用含t的式子表示s(要求写出t的取值范围);
(3)当OE取最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如表:
售价(元/件)100110120130
月销量(件)200180160140
已知该运动服的进价为每件60元,设售价为x元.销量该运动服每件的利润为y元,销量为W件,其中W与x成一次函数关系.
(1)写出y与x的函数关系式;
(2)求出W与x的函数关系式;
(3)售价为150元时,月销售量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,反比例函数y=$\frac{k}{x}$(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连结OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2
(1)填空:①点B坐标为(4,2);②S1=S2(填“>”、“<”、“=”);
(2)当S1+S2=2时,求:?k的值及点D、E的坐标;?试判断△ODE的形状,并求△ODE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:$\sqrt{2}$•sin45°+(3-π)0+(-2)
(2)化简:(a-$\frac{a}{a+1}$)÷$\frac{1}{a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知函数y=-2x+3的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M.在X轴上有一点P(a,0)(其中a>1),过点P作x轴的垂线,分别交函数y=x和y=-2x+3的图象于点C、D.若CD=3,求a的值.

查看答案和解析>>

同步练习册答案