精英家教网 > 初中数学 > 题目详情
6、如图,已知AD∥BC,AP平分∠DAB,BP平分∠ABC,点P恰好在CD上,则PD与PC的大小关系是(  )
分析:作PE∥AB与E点,利用角平分线的性质可以得到PA=PE,PB=PE,从而得到结论.
解答:解:作PE∥AD,
∵AD∥BC,
∴PE∥BC
∴∠DAP=∠EPA
∵AP平分∠DAB,
∴∠DAP=∠BAP,
∴∠EAP=∠EPA,
∴AE=EP,
同理可证EP=EB,
∴E为BA的中点,
∴P为DC的中点,
∴PD=PC,
故选B.
点评:本题考查了梯形的中位线的性质,解题的关键是正确的作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD=BC.EC⊥AB.DF⊥AB,C.D为垂足,要使△AFD≌△BEC,还需添加一个条件.若以“ASA”为依据,则添加的条件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD=BC,AC=BD,∠DAC与∠CBD有什么关系?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BC,AD平分∠CAE,试说明△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠C=
56°
56°

查看答案和解析>>

同步练习册答案