精英家教网 > 初中数学 > 题目详情
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若BD=2,DC=4,求AE和BC的长.
(1)证明:如图,连接OC,
∵DE是⊙O的切线,
∴OC⊥DE.
又∵AE⊥DE,
∴OCAE.
∴∠EAC=∠OCA.
又∵OC=OA,
∴∠OAC=∠OCA.
∴∠EAC=∠OAC.
∴AC是∠EAB的平分线.

(2)∵CD是⊙O的切线,
∴DC2=DB•DA,即42=2•DA.
解得DA=8,∴AB=6.
由(1)知,OCAE,
∴△DCO△DEA.
OC
AE
=
DO
DA

3
AE
=
5
8

解得AE=
24
5

∵DC是⊙O的切线,
∴∠DCB=∠DAC,又∠D=∠D.
∴△DCB△DAC.
CB
AC
=
DC
DA
=
4
8
=
1
2

∴AC=2CB.
在Rt△ABC中,由勾股定理得:
AC2+BC2=AB2,即(2BC)2+(BC)2=62
解得BC=
6
5
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DE⊥AC,垂足为E.
(1)DE与⊙O有什么位置关系,请写出你的结论并证明;
(2)若⊙O的半径长为3,AF=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求证:AD是⊙O的切线;
(2)如果AB=2,AD=4,EG=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连接BO、ED,有BOED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)若⊙O的半径为5,sin∠DFE=
3
5
,求EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4.
(1)求半径OC的长;
(2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△AOB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线;
(2)求证:ABCD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是(  )
A.0<x≤
2
B.l<x≤
2
C.1≤x<
2
D.x>
2

查看答案和解析>>

同步练习册答案