【题目】如图,抛物线顶点为A(1,2),且过原点,与x轴的另一个交点为B,
(1)求抛物线的解析式和B点坐标;
(2)抛物线上是否存在点M,使△OBM的面积等于2?若存在,请写出M点坐标,若不存在,说明理由;
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是( )
A.8B.C.32D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,双曲线y=(x>0,k>0)与直线y=ax+b(a≠0,b为常数)交于A(2,4),B(m,2)两点.
(1)求m的值;
(2)若C点坐标为(n,0),当AC+BC的值最小时,求出n的值;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大豆是一种非常受欢迎的农作物,已知种植某种大豆的平均产量为吨/公顷,所需成本为8千元/公顷,某地销售大豆的单价千元/吨与种植大豆的面积公顷之间关系如图所示:
为了鼓励农民种植粮食的热情,市政府出台相关政策:对本市种植大豆的农民按保护价4.5千元/吨进行补偿(即当销售单价低于4.5千元/吨时,差价由政府提供补助,比如销售单价为4千元/吨,则政府补贴农民0.5千元/吨,若单价不少于4.5千元/吨时,则不补助)。
(1)若该市计划种植大豆300公顷,销售后是否享受政府补贴?若享受则享受补贴总金额是多少千元?
(2)设该市销售大豆获得的利润(不含政府补贴部分)为w千元,当种植面积为多少公顷时利润最大,最大利润是多少千元?注:销售利润=(销售单价×每公顷产量-每公顷成本)×公顷数
(3)为保证所得的总利润(含可能得到的政府补贴)达到748千元,应该种植多少公顷大豆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.
(1)求函数和的表达式.
(2)已知直线与轴相交于点在第一象限内,求反比例函数的图象上一点,使得.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,点从点开始沿边向终点以的速度移动,与此同时,点从点开始沿边向终点以的速度移动.如果分别从同时出发,当点运动到点时,两点停止运动,设运动时间为秒.
(1)填空:__________,_________;(用含的代数式表示)
(2)当为何值时,的长度等于?
(3)当为何值时,五边形的面积有最小值?最小值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记
载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)
阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=______寸,CD=____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为( )
A. B. 10 C. D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(,是常数)中,自变量与函数的对应值如下表:
-1 | 0 | 1 | 2 | 3 | |||||
1 | 2 | 1 | -2 |
(1)判断二次函数图象的开口方向,并写出它的顶点坐标;
(2)一元二次方程(,是常数)的两个根,的取值范围是下列选项中的哪一个 .
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com