精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)求点N落在BD上时t的值;
(2)直接写出点O在正方形PQMN内部时t的取值范围;
(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;
(4)直接写出直线DN平分△BCD面积时t的值.

【答案】
(1)解:当点N落在BD上时,如图1.

∵四边形PQMN是正方形,

∴PN∥QM,PN=PQ=t.

∴△DPN∽△DQB.

∵PN=PQ=PA=t,DP=3﹣t,QB=AB=4,

∴t=

∴当t= 时,点N落在BD上


(2)解:①如图2,

则有QM=QP=t,MB=4﹣t.

∵四边形PQMN是正方形,

∴MN∥DQ.

∵点O是DB的中点,

∴QM=BM.

∴t=4﹣t.

∴t=2.

②如图3,

∵四边形ABCD是矩形,

∴∠A=90°.

∵AB=4,AD=3,

∴DB=5.

∵点O是DB的中点,

∴DO=

∴1×t=AD+DO=3+

∴t=

∴当点O在正方形PQMN内部时,t的范围是2<t<


(3)解:①当0<t≤ 时,如图4.

S=S正方形PQMN=PQ2=PA2=t2

②当 <t≤3时,如图5,

∵tan∠ADB= =

=

∴PG=4﹣ t.

∴GN=PN﹣PG=t﹣(4﹣ t)= ﹣4.

∵tan∠NFG=tan∠ADB=

∴NF= GN= ﹣4)= t﹣3.

∴S=S正方形PQMN﹣SGNF

=t2 ×( ﹣4)×( t﹣3)

=﹣ t2+7t﹣6.

③当3<t≤ 时,如图6,

∵四边形PQMN是正方形,四边形ABCD是矩形.

∴∠PQM=∠DAB=90°.

∴PQ∥AD.

∴△BQP∽△BAD.

∵BP=8﹣t,BD=5,BA=4,AD=3,

∴BQ= ,PQ=

∴QM=PQ=

∴BM=BQ﹣QM=

∵tan∠ABD=

∴FM= BM=

∴S=S梯形PQMF= (PQ+FM)QM

= [ + ]

= (8﹣t)2

= t2 t+

综上所述:当0<t≤ 时,S=t2

<t≤3时,S=﹣ t2+7t﹣6.

当3<t≤ 时,S= t2 t+


(4)解:设直线DN与BC交于点E,

∵直线DN平分△BCD面积,

∴BE=CE=

①点P在AD上,过点E作EH∥PN交AD于点H,如图7,

则有△DPN∽△DHE.

∵PN=PA=t,DP=3﹣t,DH=CE= ,EH=AB=4,

解得;t=

②点P在DO上,连接OE,如图8,

则有OE=2,OE∥DC∥AB∥PN.

∴△DPN∽△DOE.

∵DP=t﹣3,DO= ,OE=2,

∴PN= (t﹣3).

∵PQ= (8﹣t),PN=PQ,

(t﹣3)= (8﹣t).

解得:t=

③点P在OC上,设DE与OC交于点S,连接OE,交PQ于点R,如图9,

则有OE=2,OE∥DC.

∴△DSC∽△ESO.

∴SC=2SO.

∵OC=

∴SO= =

∵PN∥AB∥DC∥OE,

∴△SPN∽△SOE.

∵SP=3+ + ﹣t= ,SO= ,OE=2,

∴PN=

∵PR∥MN∥BC,

∴△ORP∽△OEC.

∵OP=t﹣ ,OC= ,EC=

∴PR=

∵QR=BE=

∴PQ=PR+QR=

∵PN=PQ,

=

解得:t=

综上所述:当直线DN平分△BCD面积时,t的值为


【解析】(1)可证△DPN∽△DQB,从而有 ,即可求出t的值.(2)只需考虑两个临界位置(①MN经过点O,②点P与点O重合)下t的值,就可得到点O在正方形PQMN内部时t的取值范围.(3)根据正方形PQMN与△ABD重叠部分图形形状不同分成三类,如图4、图5、图6,然后运用三角形相似、锐角三角函数等知识就可求出S与t之间的函数关系式.(4)由于点P在折线AD﹣DO﹣OC运动,可分点P在AD上,点P在DO上,点P在OC上三种情况进行讨论,然后运用三角形相似等知识就可求出直线DN平分△BCD面积时t的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是某运算程序该程序是循环迭代的一种根据该程序的指令,如果输入的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,E是CD上一点,DE:EC=1:3,连AE,BE,BD且AE,BD交于F,则SDEF:SEBF:SABF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数 的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下四个命题中真命题是( )
①三角形有且只有一个内切圆;
②四边形的内角和与外角和相等;
③顺次连接四边形各边中点所得的四边形一定是菱形;
④一组对边平行且一组对角相等的四边形是平行四边形.
A.①②
B.③④
C.①②④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邮递员骑摩托车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B 村,然后向北骑行9kmC村,最后回到邮局.

(1)以邮局为原点,以向北方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;

(2)C村离A村有多远?

(3)若摩托车每100km耗油3升,这趟路共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.

(1)判断这个一元二次方程的根的情况;

(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程﹣1的步骤如下:

(解析)第一步:﹣1(分数的基本性质)

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的计算依据有:去括号法则.等式性质一.③等式性质二.合并同类项法则.请选择排序完全正确的一个选项(  )

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

查看答案和解析>>

同步练习册答案