精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,已知函数y1=2x和函数y2=-x+6,不论x取何值,y0都取y1与y2二者之中的较小值.
(1)求y0关于x的函数关系式;
(2)现有二次函数y=x2-8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;
(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.

解:(1)联立
解得
所以,y0=
(说明:两个自变量取值范围都含有等号或其中一个含等号均不扣分,都没等号扣1分)

(2)∵对函数y0,当y0随x的增大而减小,
∴y0=-x+6(x≥2),
又∵函数y的对称轴为直线x=4,且a=1>0,
∴当x≤4时,y随x的增大而减小,
∴2≤x≤4;

(3)①若函数y=x2-8x+c与y0=-x+6只有一个交点,且交点在2<x<4范围内,
则x2-8x+c=-x+6,
即x2-7x+(c-6)=0,
△=73-4c=0,
解得c=18
此时x1=x2=,符合2<x<4,
所以,c=18
②若函数y=x2-8x+c与y0=-x+6有两个交点,其中一个在2≤x≤4范围内,另一个交点在2≤x≤4范围外,
则△=73-4c>0,
解得c<18
方法一:对于y0=-x+6,当x=2时,y0=4,
当x=4时,y0=2,
又∵当2≤x≤4时,y随x的增大而减小,
若y=x2-8x+c与y0=-x+6在2<x<4内有一个交点,
则当x=2时,y>y0,当x=4时,y<y0
即当x=2时,y≥4;当x=4,时y≤2,
也就是
解得16<c<18,
由c<18,得16<c<18…..…
方法二:联立消去y得,
x2-7x+(c-6)=0,
解得x=
由函数y=x2-8x+c与y0=-x+6的一个交点在2≤x≤4范围内,另一个交点在2≤x≤4范围外,
可得:
解第一个不等式组,可得即无解,
解第二个不等式组,可得即16<c<18,
由c<18,得16<c<18.
综上所述,c的取值范围是:c=18或16<c<18.
分析:(1)联立两函数解析式求出交点坐标,然后根据一次函数的增减性解答;
(2)根据一次函数的增减性判断出x≥2,再根据二次函数解析式求出对称轴,然后根据二次函数的增减性可得x≤4,从而得解;
(3)①若函数y=x2-8x+c与y0=-x+6只有一个交点,联立两函数解析式整理得到关于x的一元二次方程,利用根的判别式△=0求出c的值,然后求出x的值,若在x的取值范围内,则符合;②若函数y=x2-8x+c与y0=-x+6有两个交点,先利用根的判别式求出c的取值范围,方法一:先求出x=2与x=4时的函数值,然后利用一个解在x的范围内,另一个解不在x的范围内列出不等式组求解即可;方法二:联立两函数解析式整理得到关于x的一元二次方程,并求出方程的解,再根据两个解一个在x的范围内,另一个解不在x的范围内列出不等式组求解即可.
点评:本题是二次函数综合题型,主要涉及联立两函数解析式求交点坐标,一次函数与二次函数的增减性,以及交点的个数的讨论求解,(3)难点在于要分只有一个交点且交点横坐标在x的取值范围内,有两个交点,但只有一个交点的横坐标在x的取值范围内,而另一交点在范围外,比较复杂且难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案