精英家教网 > 初中数学 > 题目详情

如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发________s时,△BCP为等腰三角形.

2,2.5,1.4
分析:根据∠ACB=90°,BC=6cm,AC=8cm,利用勾股定理求出AB的长,再分别求出BC=BP,BP=PC时,AP的长,然后利用P点的运动速度即可求出时间.
解答:解;∵△ABC中,∠ACB=90°,BC=6cm,AC=8cm,
∴AB===10,
∵当BC=BP时,△BCP为等腰三角形,
即BC=BP=6cm,△BCP为等腰三角形,
∴AP=AB-BP=10-6=4,
∵动点P从A出发,以2cm/s的速度沿AB移动,
∴点P出发 =2s时,△BCP为等腰三角形,
当点P从A出发,以2cm/s的速度沿AB移动到AB的中点时,
此时AP=BP=PC,则△BCP为等腰三角形,
点P出发=2.5s时,△BCP为等腰三角形,
当BC=PC时,
过点C作CD⊥AB于点D,
则△BCD∽△BAC,

解得:BD=3.6,
∴BP=2BD=7.2,
∴AP=10-7.2=2.8,
∴点P出发1.4s时,△BCP为等腰三角形.
故答案为:2;2.5;1.4.
点评:此题主要考查勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB的长,然后再利用等腰三角形的性质去判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE过点O交AB于D,交AC于E,且DE∥BC.则△ADE周长为
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图△ABC中,∠C=90°,AC=6,AB=10,D是BC边的中点,以AD上一点O为圆心的圆与AB,BC都相切,则⊙O的半径为(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南岗区一模)如图△ABC中,DE∥BC,CD、BE交于点F,若DF=1,CF=3,AD=2,则线段BD的长等于
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠A=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为
69°
69°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠ABC=20°,外角∠ABF的平分线与CA边的延长线交于点D,外角∠EAC的平分线交BC边的延长线于点H,若∠BDA=∠DAB,则∠AHC=(  )度.

查看答案和解析>>

同步练习册答案