¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©ÓɵãAµÄ×ø±ê¿ÉÇóµÃOAµÄ³¤£¬½«Ï߶ÎOAÈÆÔµãO˳ʱÕëÐýת120°ºó£¬Ç¡ºÃÂäÔÚxÖáÉÏ£¬Óɴ˵óöBµãµÄ×ø±ê£®
£¨2£©ÀûÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ¼´¿É£®
£¨3£©¹ýP×÷yÖáµÄƽÐÐÏß½»Ï߶ÎABÓÚD£¬Ê×ÏÈÇó³öÖ±ÏßABµÄ½âÎöʽ£¬½áºÏÖ±ÏߺÍÅ×ÎïÏߵĽâÎöʽÏȱí´ï³öP¡¢DµãµÄ×ø±ê£¬½ø¶øÄܵóöÏ߶ÎPDµÄ³¤£¬ÒÔPDΪµ×£¬A¡¢Bºá×ø±ê²îµÄ¾ø¶ÔֵΪ¸ß¼´¿ÉÇó³ö¡÷ABPµÄÃæ»ýº¯Êý¹Øϵʽ£¬¸ù¾Ýº¯ÊýµÄÐÔÖʽøÐÐÅжϼ´¿É£®
£¨4£©ÓûÇó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬±ØÐëÏÈÇó³öµãQµÄ×ø±ê£»µãQ¡¢A¹ØÓÚM¶Ô³Æ£¬ÄÇôµãQµÄºá×ø±ê±ØΪ3£»ÒÑÖªÏ߶ÎABΪRt¡÷QABµÄÖ±½Ç±ß£¬ÄÇôÐèÒª·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢ÙBQΪֱ½Ç±ß£¬¼´BQ¡ÍAB£¬ÄÇôÕâÁ½ÌìÖ±ÏßµÄбÂʳ˻ýΪ-1£¬¼´£ºkAB×kBQ=-1£¬½áºÏµãBµÄ×ø±ê¼´¿ÉÇó³öÖ±ÏßBQµÄ½âÎöʽ£¬½ø¶øÄÜÇó³öµãQµÄ×ø±êÒÔ¼°·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
¢ÚAQΪֱ½Ç±ß£¬½âÌâ·½·¨ºÍ¢ÙÍêÈ«Ïàͬ£®
½â´ð£º½â£º£¨1£©¡ßA£¨-1£¬
£©£¬
¡àOA=
=2£»
¡ßOAÈÆO˳ʱÕëÐýת120°µÃOB£¬
¡àOB=OA=2£¬ÇÒBÔÚxÖáÕý°ëÖáÉÏ£¬
¡àB£¨2£¬0£©£®
£¨2£©ÓÉÓÚÅ×ÎïÏß¹ýԵ㣬¿ÉÉèÆä½âÎöʽΪy=ax
2+bx£¬´úÈëA£¨-1£¬
£©¡¢B£¨2£¬0£©£¬µÃ£º
£¬½âµÃ
¡àÅ×ÎïÏߵĽâÎöʽΪy=
x
2-
£®
£¨3£©ÉèP£¨x£¬
x
2-
£©£¨0£¼x£¼2£©£¬¹ýP×÷PD¡ÎyÖá½»Ï߶ÎABÓÚD£»
ÉèÖ±ÏßAB£ºy=kx+b£¨k¡Ù0£©£¬½«A£¨-1£¬
£©¡¢B£¨2£¬0£©´úÈ룬µÃ£º
£¬½âµÃ
¡àÖ±ÏßAB£ºy=-
x+
£¬ÔòµãDµÄ×ø±ê£¨x£¬-
x+
£©£»
¡àPD=£¨-
x+
£©-£¨
x
2-
£©=-
x
2+
x+
£¬
¡àS
¡÷APB=
×£¨-
x
2+
x+
£©×3=-
x
2+
x+
£»
SÊǹØÓÚxµÄ¶þ´Îº¯Êý£¬ÇÒ¿ª¿ÚÏòÏ£¬¶Ô³ÆÖáx=
ÔÚ0£¼x£¼2µÄ·¶Î§ÄÚ£¬Òò´Ëµ±x=
ʱ£¬¡÷PABµÄÃæ»ý×î´ó£¬ÇÒ×î´óֵΪ
£»
´ËʱPµãµÄ×ø±ê£¨
£¬-
£©£®
£¨4£©µãQÓëÅ×ÎïÏßÉϵĵãA£¨-1£¬
£©¹ØÓÚµãM£¨1£¬t£©³ÉÖÐÐĶԳƣ¬ËùÒÔµãQµÄºá×ø±ê±ØΪ3£»
¢ÙBQΪRt¡÷QABµÄÖ±½Ç±ßʱ£¬BQ¡ÍAB£¬¼´£ºk
AB×k
BQ=-1£¬½âµÃ£ºk
BQ=
£»
¿ÉÉèÖ±ÏßBQ£ºy=
x+b£¬´úÈëB£¨2£¬0£©£¬µÃ£ºb=-2
£¬
¡àÖ±ÏßBQ£ºy=
x-2
£¬µ±x=3ʱ£¬y=
£¬¼´ Q£¨3£¬
£©£»
½«µãQµÄ×ø±ê´úÈë·´±ÈÀýº¯ÊýµÄ½âÎöʽÖУ¬µÃ£ºk
1=xy=3
£»
¢ÚAQΪRt¡÷AOBµÄÖ±½Ç±ßʱ£¬AQ¡ÍAB£¬Í¬¢Ù¿ÉÇóµÃ£ºk
2=15
£»
×ÛÉÏ£¬·ûºÏÌõ¼þµÄ·´±ÈÀýº¯Êý½âÎöʽΪ£ºy=
»òy=
£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÈ·¶¨¡¢Ö±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°Í¼ÐÎÃæ»ýµÄÇ󷨵ÈÖØҪ֪ʶ£»×îºóÒ»ÌâÖУ¬»¥Ïà´¹Ö±µÄÁ½ÌõÖ±ÏßбÂʵij˻ýΪ-1£¬Õâ¸ö½áÂÛÐèÒª¼Çס£»Õâ¸öСÌâÒ²¿ÉÒÔ·Ö±ð¹ýA¡¢Q×÷×ø±êÖáµÄ´¹Ïߣ¬Í¨¹ý¹¹½¨ÏàËÆÈý½ÇÐÎÀ´ÇóµãQµÄ×ø±ê£¬²»¹ýÕâÑùµÄ¼ÆËã¹ý³Ì»áÉÔ΢¸´ÔÓһЩ£®