精英家教网 > 初中数学 > 题目详情
5.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.
(1)求证:△ABC≌△ABF;
(2)当∠CAB=60°时,四边形ADFE为菱形;
(3)当AB=4$\sqrt{2}$时,四边形ACBF为正方形.

分析 (1)根据EF∥AB,可以得到∠FAB和∠CAB的关系,由AC和AF都是圆的半径,AB是△ABC和△ABF的公共边可以得到△ABC和△ABF关系;
(2)根据四边形ADFE为菱形,通过变形可以得到∠CAB的度数;
(3)根据四边形ACBF为正方形,AC=4,AB是该正方形的对角线,可以求得AB的长.

解答 (1)证明:∵EF∥AB,
∴∠AEF=∠CAB,∠AFE=∠FAB,
又∵AE=AF,
∴∠AEF=∠AFE,
∴∠FAB=∠CAB,
在△ABC和△ABF中,
$\left\{\begin{array}{l}{AF=AC}\\{∠FAB=∠CAB}\\{AB=AB}\end{array}\right.$
∴△ABC≌△ABF(SAS);
(2)连接CF,如右图所示,
若四边形ADFE为菱形,则AE=EF=FD=DA,
又∵CE=2AE,CE是圆A的直径,
∴CE=2EF,∠CFE=90°,
∴∠ECF=30°,
∴∠CEF=60°,
∵EF∥AB,
∴∠AEF=∠CAB,
∴∠CAB=60°,
故答案为:60°;
(3)若四边形ACBF为正方形,则AC=CB=BF=FA,AB是正方形ACBF的对角线,
∵AC=4,
∴AB=$\sqrt{A{C}^{2}+C{B}^{2}}=\sqrt{{4}^{2}+{4}^{2}}=4\sqrt{2}$.
故答案为:4$\sqrt{2}$.

点评 本题考查圆的综合题,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AB=AC=13厘米,BC=10厘米.AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动的时间为t秒.
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得PM=AP+BM?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2$\sqrt{5}$.
以上结论中,你认为正确的有①③④.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图形似“w”的函数是由抛物线y1的一部分,其表达式为:y1=$\frac{\sqrt{3}}{3}$(x2-2x-3)(x≤3)以及抛物线y2的一部分所构成的,其中曲线y2与曲线y1关于直线x=3对称,A、B是曲线y1与x轴两交点(A在B的左边),C是曲线y1与y轴交点.
(1)求A,B,C三点的坐标和曲线y2的表达式;
(2)我们把其中一条对角线被另一条对角线垂直且平分的四边形称为筝形.过点C作x轴的平行线与曲线y1交于另一个点D,连接AD.试问:在曲线y2上是否存在一点M,使得四边形ACDM为筝形?若存在,计算出点M的横坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.
(1)求点A的坐标;
(2)若BC=4,
①求抛物线的解析式;
②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).
(1)当t=$\frac{60}{23}$s时,△BPQ为等腰三角形;
(2)当BD平分PQ时,求t的值;
(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.
探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.若以圆内接四边形ABCD的各边为弦作任意圆,求证:这些圆相交的四点共圆.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知:如图,AB∥CD,若∠A=66°∠B=45°,则∠1=66°,∠2=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图为一个正方体的表面展开图,则该正方体的六个表面中,与“善”字相对的面上的字是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案