精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中放置一直角三角板,其顶点为,将此三角板绕原点顺时针旋转,得到
(1)如图,一抛物线经过点,求该抛物线解析式;
(2)设点是在第一象限内抛物线上一动点,求使四边形的面积达到最大时点的坐标及面积的最大值.
解:(1)∵抛物线过
设抛物线的解析式为
又∵抛物线过,将坐标代入上解析式得:

即满足条件的抛物线解析式为
(2)(解法一):如图1,∵为第一象限内抛物线上一动点,


点坐标满足
连接


=
时,最大.
此时,.即当动点的坐标为时,
最大,最大面积为
(解法二):如图2,连接为第一象限内抛物线上一动点,

的面积为定值,
最大时必须最大.
长度为定值,∴最大时点的距离最大.
即将直线向上平移到与抛物线有唯一交点时,
的距离最大.
设与直线平行的直线的解析式为
联立


解得此时直线的解析式为:
解得
∴直线与抛物线唯一交点坐标为
轴交于
中,
的距离
此时四边形的面积最大.
的最大值=
(1)由三点的坐标根据待定系数法即可求出解析式;
(2)先根据题意列出函数关系式,再根据函数关系式的特征即可得到最大值。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线与交于A(-1,0)、B(3,0)两点,与轴交于点C(0,3),求抛物线的解析式;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过A(1,0)、B(5,0)、C(0,5)三点。  
(1)求这个二次函数的解析式;
(2)过点C的直线y=kx+b与这个二次函数的图象相交于点E(4,m),请求出△CBE的面积S的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(-2,-c)向右平移8个单位得到点,A与两点均在抛物线上,且这条抛物线与轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.

(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线的部分图象如图,则抛物线的对称轴为直线x=       ,满足y<0的x的取值范围是       ,将抛物线   平移   个单位,则得到抛物线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数与函数的图象大致如图.若则自变量的取值范围是(  ).
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(    )

A.-3           B.1              C.5               D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x>0),若该车某次的刹车距离为5 m,则开始刹车时的速度为(   )
A.40 m/sB.20 m/s
C.10 m/sD.5 m/s

查看答案和解析>>

同步练习册答案